CLHEP Vector Package
and
Z00OM PhysicsVector Package
Space and Lorentz Vector and Transformation
Package
Formulas and Definitions

Fermilab “ZOOM” Physics Class Library Task Force

Version 2.3, September 2, 2003

The CLHEP Vector package implements 3-vectors, 4-vectors, rotations,
Lorentz transfomations and related concepts. This includes all functionallity
in the original CLHEP package, and in the ZOOM PhysicsVectors package.
The latter is now implemented as wrapper headers, so that classes from the
ZOOM package can be used wherever the corresponding CLHEP class are
expected.

This document briefly lists the methods available, then presents relevant
mathematical definitions.

Contents

1 Available Classes and Methods
1.1 Hep3Vector Class — Vector of real quantities in 3-space
1.2 SpaceVector Class — Derived from Hep3Vector
1.3 UnitVector Class

1.4 HepLorentzVector Class — Vector of real quantities in 4-space

o N O w W

1.5 LorentzVector Class — Typedefed from HepLorentzVector . 13

1.6 Hep2Vector Class 13
1.7 HepRotation Classes 15
1.8 Rotation Class — Derived from HepRotation 18

1

CONTENTS

1.9 HepLorentzRotation Classes 18

1.10 LorentzTransformation Class — Derived from HepLorentzRotation 22

Hep3Vector and SpaceVector Classes 23
2.1 Dot and Cross Products 23
2.2 Near Equality and isOrthogonal /isParallel 23
2.3 Measures of Near-ness, 25
2.4 Intrinsic Properties and Relativistic Quantities 26
2.5 Properties Involving Vectors and Directions 27
2.6 Direct Vector Rotations 28
2.7 Overflow for Large Vectors, 30
HepLorentzVector Class 30
3.1 Combinations and Properties of HepLorentzVectors 30
3.2 Kinematics of HepLorentzVectors 31
3.3 Invariant Mass and the Center-of-Mass Frame 33
3.4 Various Forms of Masses and Magnitudes 34
3.5 Direct HepLorentzVector Boosts and Rotations 34
3.6 Near-equality of HepLorentzVectors 36
3.7 Other Boolean Methods for HepLorentzVectors 37
3.8 Nearness measures for HepLorentzVectors 38
Pseudorapidity, Rapidity and CoLinearRapidity 39
HepRotation Class 41
5.1 Applying Rotations to Vectors and 4-Vectors 42
5.2 Axial Rotations 42
5.3 Expressing a HepRotation as HepAxisAngle or HepEulerAngles

43
5.4 Nearness Measure for HepRotations, HepAxisAngles, and HepEulerAngles

44
5.5 Comparison for HepRotations, HepAxisAngles, and HepEulerAngles

46
5.6 The Rotation Group 46
5.7 Rectifying Rotations 47
HepLorentzRotation Class 47
6.1 Pure Lorentz Boosts oL 48

6.2 Components of HepLorentzRotations 49

6.3 Decomposition of Transformations into Boost and Rotation . . 50
6.4 isNear() and howNear() for HepLorentzRotations 50
6.5 Ordering Comparisons of HepLorentzRotations 51
6.6 The Lorentz Group, 51
6.7 Rectifying HepLorentzRotations 52
7 When Exceptions Occur 54
7.1 How Problems Are Dealt With 54
7.2 Possible Exceptions 54
8 Names and Keywords 57
8.1 Symbols in the CLHEP Vector Package 57
8.2 Further Symbols Defined in ZOOM Headers 58

1 Available Classes and Methods

In this document we somewhat abbreviate the signatures of methods, since
coders will look at the header files anyway. Any arguments specified without
an explicit data type are of the scalar type HepDouble, which is just double
on virtually every system. Unless otherwise indicated, parameter passage for
scalars is by value, and parameter passage for other types is by constant ref-
erence. This document also does not discuss namespace issues.

1.1 Hep3Vector Class — Vector of real quantities in 3-
space

Throughout this section, arguments named v, v1, v2, etc., are of type Hep3Vector.

Constructors and Accessors

e Hep3Vector()
e Hep3Vector(x,y, z)

The following accessor methods are used to obtain the named coordinate com-
ponents, as in double s = v.r();.

x() y() =()

r() > see eqn. 2
theta() > see eqn. 2
eta() > see eqn. 4

4 1 AVAILABLE CLASSES AND METHODS

e phi() > see eqn. 2, 3
e rho() > see eqn. 3
o getX() getY() getZ()

e getR() getTheta() getPhi()

e getEta() getRho()

The Cartesian components may also be accessed by the index syntax, using
either square braces or parentheses. In either case, the meaning of the index
is O-based, and an enum is provided to help clarify this: Hep3Vector: :X=0,
Hep3Vector: :Y=1, Hep3Vector: :Z=2.

There is a family of methods of the form set Component() which may be used
to set one component in Cartesian or Polar coordinates, keeping the other
two constant. Also available is setCylTheta(), which modifies 6 (the angle
against the Z axis) while keeing ¢ and the radial distance from the Z axis p
constant.

Finally, there is also a family of set() methods that may be used to update
all of a Hep3Vector’s three coordinates at once. These set() methods’ sig-
natures are in one-to-one correspondence with the non-default constructors
listed above.

Operators

For Hep3Vectors v, vl, and v2, and for a scalar c, the following arithmetic
operations are provided, in each case resulting in a Hep3Vector.

vl + v2 and vl — v2
vxcandc* v

v/c

— V

In addition, the following arithmetic modify-assignment operations are pro-
vided.

e vl +=v2 and vl —= v2
e vx=candv /=c¢

The usual six relational operations (==, |=, <, <=, >, >=) are provided
(see eqn. 25). Further, the following member functions are useful to check for
equality within a relative tolerance.

e bool isNear(v, epsilon) > see eqn. 8
e Scalar howNear(v) > see eqn. 16, 19, 21

1.1 Hep3Vector Class — Vector of real quantities in 3-space)

e Scalar deltaR(v) > see eqn. 20

The tolerance epsilon may be omitted. The following class-wide (static) func-
tions are used to obtain and set the default tolerance for nearness.

e HepDouble setTolerance(tol) > see eqn. 15
e HepDouble getTolerance()

Methods

e ostream & operator<<(ostream & os, v)
e istream & operator>>(istream & is, Hep3Vector & v)

e HepDouble dot(v) > see eqn. 5
e Hep3Vector cross(v) > see eqn. 6
e HepDouble diff2(v) > see eqn. 7
e bool isParallel(v, epsilon) > see eqn. 10
e bool isOrthogonal(v, epsilon) > see eqn. 11
e HepDouble howParallel(v) > see eqn. 17, 22
e HepDouble howOrthogonal(v) > see eqn. 18, 23
e HepDouble mag2() > see eqn. 27
e HepDouble mag() > see eqn. 26, 31
e HepDouble beta() > see eqn. 31
e HepDouble gamma() > see eqn. 32
e HepDouble pseudoRapidity() > see eqn. 4
e HepDouble coLinearRapidity() > see eqn. 34
e Hep3Vector unit() > see eqn. 29
e Hep3Vector orthogonal() > see eqn. 30

The following methods depend on a reference direction (specified by a Hep3Vector
u). Signatures omitting the reference direction are also supplied—2 is implied
in these cases and the methods take advantage of the simpler form.

e HepDouble perp(u) > see eqn. 40
e HepDouble perp2(u) > see eqn. 41
e SpaceVector perpPart(u) > see eqn. 42
e SpaceVector project(u) > see eqn. 43
e HepDouble angle(u) > see eqn. 35
e HepDouble theta(u) > see eqn. 35
e HepDouble cosTheta(u) > see eqn. 36
e HepDouble cos2Theta(u) > see equ. 37
e HepDouble eta(u) > see eqn. 28, 38, 127, 132

6 1 AVAILABLE CLASSES AND METHODS

e HepDouble polarAngle(v2, u) > see eqn. 44, 46

e HepDouble deltaPhi(v2) > see eqn. 47

e HepDouble azimAngle(v2, u) > see eqn. 47, 49

e HepDouble rapidity(u) > see eqn. 33, 39
Rotations

These methods change the vector:

e Hep3Vector & rotateX(delta) > see eqn. 53
e Hep3Vector & rotateY(delta) > see eqn. 52
e Hep3Vector & rotateZ(delta) > see eqn. 51, 50
e Hep3Vector & rotateUZ(Hep3Vector) > see eqn. 56
e Hep3Vector & rotate(axis, delta) > see eqn. H4
e Hep3Vector & rotate(const AxisAngle & ax) > see eqn. b4
e Hep3Vector & rotate(phi, theta, psi) > see eqn. 55
e Hep3Vector & rotate(const EulerAngles & e) > see eqn. 55

The following methods both do ¢ <= Rv. (Notice the order of multiplication
for v *= R.)

e Hep3Vector transform (const HepRotation & R) > see eqn. D7
e Hep3Vector operator *= (const HepRotation & R) > see eqn. 57

These global functions do not change the Hep3Vector v:

e Hep3Vector rotationXOf(v, delta) > see eqn. 53
e Hep3Vector rotationYOf(v, delta) > see eqn. 52
e Hep3Vector rotationZOf(v, delta) > see eqn. 51, 50
e Hep3Vector rotationOf(v, axis, delta) > see eqn. H4
e Hep3Vector rotationOf(v, const AxisAngle & ax) > see eqn. 54
e Hep3Vector rotationOf(v, phi, theta, psi) > see eqn. 55
e Hep3Vector rotationOf(v, const EulerAngles & e) > see eqn. HH

1.2 SpaceVector Class — Derived from Hep3Vector

The SpaceVector class provides backward compatibility with the original
ZOOM PhysicsVectors package. It is publicly derived from Hep3Vector. It
would simply be a typedef off Hep3Vector, in the appropriate namespace, but
for one set of features which were felt to be overkill in the CLHEP context.

1.3 UnitVector Class 7

This is the ability to construct a SpaceVector providing spherical or cylindri-
cal coordinates.

Associated with these constructors are a set of defined keywords which
allow disambiguation of the various forms of constructors. These keywords
are RADIANS, DEGREES, and ETA,

Throughout this section, we will illustrate using RADIANS, but this may be
replaced by DEGREES to indicate the corresponding angle’s units. For theta,
this may also be replaced by ETA, to indicate that the pseudorapidity is being
supplied.

e SpaceVector()

e SpaceVector(x, y, z)

e SpaceVector(r, theta, RADIANS, phi, RADIANS) > see eqn. 2
e SpaceVector(rho, phi, RADIANS; z) > see eqn. 3

1.3 UnitVector Class

It was found useful in the ZOOM package to express the concept of a UnitVector,
that is, a vector known to be inherently of unit length. CLHEP neither has
such a class, and it is felt (at this time) that it should not. In the merged
package, UnitVector is provided as a header file which appears only in the
PhysicsVectors area.

Since UnitVector depends on no non-header implementation code, issues
of where to place the library containing non-CLHEP code do not arise.

Although the UnitVector class is not derived from the SpaceVector class,
all const methods (except for three relativistic kinematic methods which only
make sense for a vector of length less than one) are provided for UnitVector.
Thos non-const methods of Hep3Vector which do not risk violating the unit-
length property, such as rotation, are also provided. In this section, therefore,
only the differences in the classes are described.

Constructors and Accessors

UnitVector constructors (and set () methods) have the same signatures as do
the corresponding SpaceVector methods, but normalize before returning. The
default UnitVector constructor yields Z. In addition, we have the conversion
constructor

e UnitVector(Hep3Vector v)

Unlike the case for Hep3Vector, UnitVector disallows setting a single Carte-
sian coordinate. Also, of course, modifying the radius of a UnitVector is
forbidden.

8 1 AVAILABLE CLASSES AND METHODS

Operators

UnitVectors are treated as Hep3Vectors for purposes of arithmetic and com-
parisons, except that unary minus returns a UnitVector. Modify-assignment
(e.g., +=) is forbidden on UnitVectors.

Methods

Most UnitVector methods match those of the Hep3Vector class; some are
modified, however, to take advantage of the r = 1 property. Forbidden methods
include beta(), gamma(), and rapidity ().

Rotations

All methods and functions in this category apply equally to UnitVectors as
they do to Hep3Vectors.

1.4 HepLorentzVector Class — Vector of real quantities
in 4-space

Throughout this section, arguments named p, pl, p2, etc., are of type HepLorentzVector,
arguments named v, vl, v2, etc., are of type Hep3Vector, and an argument
named t will refer to a scalar meant as a time component.

Constructors and Accessors

HepLorentzVector()
HepLorentzVector(x, vy, z, t)
HepLorentzVector(v, t)
HepLorentzVector(t, v)
HepLorentzVector(t)
HepLorentzVector(x, y, z)
HepLorentzVector(v)

The following accessor methods are used to obtain the named coordinate com-
ponents, as in double s = p.t();.

x() y() =() t()

px() py() pz() e()
getX() getY() getZ() getT()

v() or getV() or vect()

1.4 HepLorentzVector Class — Vector of real quantities in 4-space 9

The Cartesian components may also be accessed by the index syntax, us-
ing either square braces or parentheses. In either case, the meaning of the
index is O-based, with the time component last. An enum is nested in the
HepLorentzVector class to help clarify this: X=0, Y=1, Z=2, T=3.

The spatial components can also be accessed in spherical coordinates:

HepDouble theta() const;
HepDouble cosTheta() const;
HepDouble phi() const;
HepDouble rho() const;

There is a family of methods of the form set Component() which may be used
to set one component in Cartesian or spherical coordinates, or the p cylindrical
coordinate, keeping the other components in that system constant.

e setX(HepDouble); setPx(HepDouble);

e setY(HepDouble); setPy(HepDouble);

e setZ(HepDouble); setPz(HepDouble);

e setT(HepDouble); setE(HepDouble);

e setTheta(HepDouble); > see eqn. 2
e setPhi(HepDouble); > see eqn. 2
e setRho(HepDouble); setPerp(HepDouble); > see eqn. 3

The entire spatial component can be set at once, keeping the time compo-
nent constant.

e setVect(HepDouble); setV(HepDouble);

And there is a family of set() methods, corresponding to the constructors,
that may be used to update all four of a HepLorentzVector’s coordinates at
once.

e set (x,y, z, t);
e set (v, t);
e set (t, x);

Assignment from a Hep3Vector is supported, as in p = v;.

Finally, there are conversion operators to const and non-const Hep3Vector;
these were present in the original CLHEP classes. They ignore the time com-
ponent.

10 1 AVAILABLE CLASSES AND METHODS

Operators

For HepLorentzVectors p, pl, and p2, and for a scalar ¢, the following arith-
metic operations are provided, in each case resulting in a HepLorentzVector.

pl + p2 and pl — p2
p*candc*p
p/c

- P

In addition, the following arithmetic modify-assignment operations are pro-
vided.

e pl +=p2 and pl —= p2
e px=candp /=c

The usual six relational operations (==, |=, <, <=, >, >=) are provided
(see eqn. 113). Further, the following member functions are useful to check
for equality, etc., within a relative tolerance.

e bool isNear(p, epsilon) > see eqn. 107
e HepDouble howNear(p) > see eqn. 119, 123
e bool isNearCM(p, epsilon) > see eqn. 111, 112
e HepDouble howNearCM(p) > see eqn. 120, 124
e bool isParallel(p, epsilon) > see eqn. 114, 115
e HepDouble howParallel(p) > see eqn. 121, 125
e HepDouble deltaR(p) > see eqn. 20

The tolerance epsilon may be omitted. The following class-wide (static) func-
tions are used to obtain and set the default tolerance for nearness.

e HepDouble setTolerance(HepDouble tol)
e HepDouble getTolerance()

Methods

Establishing a metric convention (static):

e ZMpvMetric_t setMetric(ZMpvMetric_t m)
e ZMpvMetric_t getMetric()

Metric-independent properties and methods of this 4-vector (the results of
these methods do not change sign if you go from the TimePositive to the
TimeNegative metric):

1.4 HepLorentzVector Class — Vector of real quantities in 4-space 11

ostream & operator<<(ostream & os, p)
istream & operator>>(istream & is, LorentzVector & p)

bool isSpacelike() > see eqn. 116
bool isTimelike() > see eqn. 117
bool isLightlike(epsilon) > see eqn. 118
HepDouble howLightlike() > see eqn. 122, 126
HepDouble plus() > see eqn. 66
HepDouble minus() > see eqn. 67
HepDouble euclideanNorm2() > see eqn. 63
HepDouble euclideanNorm() > see eqn. 64
HepDouble restMass2() > see eqn. 70
HepDouble restMass() > see eqn. 71
HepDouble m2() > see eqn. 89
HepDouble invariantMass2() > see eqn. 89
HepDouble m() mag() > see eqn. 62
HepDouble invariantMass() > see eqn. 90
HepDouble mt2() > see eqn. 81
HepDouble mt() > see eqn. 82
HepDouble et2() > see eqn. 83
HepDouble et() > see eqn. 84
LorentzVector rest4Vector() > see eqn. 72
SpaceVector boostVector() > see eqn. 73
HepDouble beta() > see eqn. 74
HepDouble gammal() > see eqn. 79
HepDouble eta() > see eqn. 76, 77, 128
HepDouble rapidity() > see eqn. 78, 79
HepDouble coLinearRapidity/() > see eqn. 80, 136
SpaceVector findBoostToCM() > see eqn. 91

Metric-dependent properties of this 4-vector: (the results of these methods
change sign if you go from the TimePositive to the TimeNegative metric):

HepDouble mag2() > see eqn. 60

Metric-independent methods combining two 4-vectors:

HepDouble delta2Euclidean(p) > see eqn. 65
HepDouble plus(p) > see eqn. 68
HepDouble minus(p) > see eqn. 69
HepDouble eta(p) > see eqn. 76, 77, 128, 131
HepDouble rapidity(p) > see eqn. 78, 79, 129, 133
HepDouble invariantMass2(p) > see eqn. 89

HepDouble invariantMass(p) > see eqn. 90

12 1 AVAILABLE CLASSES AND METHODS

e SpaceVector findBoostToCM(p) > see eqn. 91

Metric-dependent methods combining two 4-vectors:

e HepDouble dot(p) > see eqn. 58, 59
e HepDouble operator®(p) > see eqn. 58, 59
e HepDouble diff2(p) > see eqn. 61

Methods involving properties of the spatial part of the 4-vector (these could be
invoked as p.v().whatever() but the p.whatever() syntax is shorter). Most of
these take a reference direction v; if v is omitted, 2 is implied and the methods
take advantage of the simpler form.

e HepDouble perp(v) > see eqn. 40
e HepDouble perp2(v) > see eqn. 41
e HepDouble angle() > see eqn. 35
e setVectM(HepDouble); setVectMag(HepDouble); > see eqn. 2
e sectRho(HepDouble); setPerp(HepDouble); > see eqn. 3
e HepDouble pseudoRapidity() > see eqn. 4

Rotations and Boosts

These methods change the 4-vector.

e LorentzVector & rotateX(delta) > see eqn. 53
e LorentzVector & rotateY(delta) > see eqn. 52
e LorentzVector & rotateZ(delta) > see eqn. 51
e LorentzVector & rotate(v, delta) > see eqn. 54
e LorentzVector & rotate(delta, v) > see eqn. 54
e LorentzVector & rotate(phi, theta, psi) > see eqn. 55
e LorentzVector & rotate(EulerAngles & ¢) > see eqn. 55
e LorentzVector & rotateUz(v) > see eqn. 56
e LorentzVector & boostX(beta) > see eqn. 101
e LorentzVector & boostY(beta) > see eqn. 102
e LorentzVector & boostZ(beta) > see eqn. 103
e LorentzVector & boost(v) > see eqn. 105
e LorentzVector & boost(v, beta) > see eqn. 104

The following methods all do <= Rp where R is either a HepRotationor a
HepLorentzRotation. (Notice the order of multiplication for p *= R.)

e HepLorentzVector transform (const HepRotation & R) > see eqn. 106
e HepLorentzVector operator *= (const HepRotation & R) > see eqn. 106

1.5 LorentzVector Class — Typedefed from HepLorentzVector 13

e HepLorentzVector transform (const HepLorentzRotation & R) > see
eqn. 106

e HepLorentzVector operator *= (const HepLorentzRotation & R) > see
eqn. 106

These functions return a new 4-vector.

e LorentzVector rotationXOf(p, delta) > see eqn. 53
e LorentzVector rotationYOf(p, delta) > see eqn. 52
e LorentzVector rotationZOf(p, delta) > see eqn. H1
e LorentzVector rotationOf(p, v, delta) > see eqn. b4
e LorentzVector rotationOf(p, phi, theta, psi) > see eqn. bH
e LorentzVector rotationOf(p, const EulerAngles & e) > see eqn. bH
e LorentzVector boostXOf(p, beta) > see eqn. 101
e LorentzVector boostYOf(p, beta) > see eqn. 102
e LorentzVector boostZOf(p, beta) > see eqn. 103
e LorentzVector boostOf(p, betaVector) > see eqn. 105
e LorentzVector boostOf(p, v, beta) > see eqn. 104

1.5 LorentzVector Class — Typedefed from HepLorentzVector

The LorentzVector class provides backward compatibility with the original
ZOOM PhysicsVectors package. It is simply a typedef off HepLorentzVector,
in the appropriate namespace. This is because there were no features or con-
structors in the ZOOM product which were felt to be overkill in the CLHEP
context.

1.6 Hep2Vector Class

The Hep2Vector class is a simple plane vector. Throughout this section, ar-
guments named s, sl, s2, etc., are of type Hep2Vector.

Constructors and Accessors

e Hep2Vector()
e Hep2Vector(x,y)
e Hep2Vector(Hep3Vector v)

That last constructor will supress the Z component of 7.

Cartesian and polar coordinates may be accessed; these are identical to
those of a Hep3Vector, with the Z component fixed at zero.

14 1 AVAILABLE CLASSES AND METHODS

e x() y()

e () > see eqn. 2
e phi() > see eqn. 2

The Cartesian components may also be accessed by the index syntax, using
either square braces or parentheses. In either case, the meaning of the index
is 0-based, and an enum is provided to help clarify this: Hep2Vector: :X=0,
Hep2Vector: :Y=1.

There is a family of methods of the form set Component() which may be used
to set one component in Cartesian or Polar coordinates, keeping the other
component constant.

e setX(x) setY(y)
e setR(r) setMag(r) > see eqn. 2
e setPhi(phi) > see eqn. 2

Finally, there is also a family of set() methods that may be used to update
all of a Hep3Vector’s three coordinates at once. These set() methods’ sig-
natures are in one-to-one correspondence with the non-default constructors
listed above.

Operators

For Hep2Vectors s, sl, and s2, and for a scalar ¢, the following arithmetic
operations are provided, in each case resulting in a Hep2Vector.

e sl +s2 and sl — s2
e sxcandcx*s
es/c

e — S

In addition, the following arithmetic modify-assignment operations are pro-
vided.

e sl +=s2 and vl —= s2
e sx=candv /=c

The usual six relational operations (==, |=, <, <=, >, >=) are provided
(see eqn. 25). Further, the following member functions are useful to check for
equality within a relative tolerance. (Again, these match the corresponding
methods for Hep3Vector, with Z-component pinned at zero.)

e bool isNear(v, epsilon) > see eqn. 8

1.7 HepRotation Classes 15

e Scalar howNear(v) > see eqn. 16, 19, 21
e Scalar deltaR(v) > see eqn. 20

The tolerance epsilon may be omitted. The following class-wide (static) func-
tions are used to obtain and set the default tolerance for nearness.

e HepDouble setTolerance(tol) > see eqn. 15
e HepDouble getTolerance()

Methods

The set of methods is somewhat simpler that for Hep3Vector, but in all ap-
plicable cases the definitions match those for Hep3Vector:

e ostream & operator<<(ostream & os, s)

e HepDouble dot(v) > see eqn. 5
e bool isParallel(v, epsilon) > see eqn. 10
e bool isOrthogonal(v, epsilon) > see eqn. 11
e HepDouble howParallel(v) > see eqn. 17, 22
e HepDouble howOrthogonal(v) > see eqn. 18, 23
e HepDouble angle(s2) > see eqn. 35
e HepDouble mag2() > see eqn. 27
e HepDouble mag() > see eqn. 26, 31
e Hep2Vector unit() > see eqn. 29

There is one method which is applicable for Hep2Vector but which does not
match the definition for Hep3Vector:

e Hep2Vector orthogonal()

s.orthogonal () is s rotated clockwise by 90° if |s,| < |s,|, and counterclock-
wise by 90° if |s,| > |s,|, and counterclockwise.

In the ZOOM area, the class PlaneVector is typedefed to Hep2Vector.

1.7 HepRotation Classes

Throughout this section, arguments named r, r1, r2, etc., are of type HepRotation.
Also, rowX, rowY, rowZ, colX, colY, colZ will represent Hep3Vector argu-
ments.

16

1 AVAILABLE CLASSES AND METHODS

Constructors and Accessors

Rotation()

Rotation(r)

Rotation & operator=(1)

Rotation & set(1)

Rotation(phi, theta, psi)

Rotation & set(phi, theta, psi)

Rotation(const EulerAngles & e)
Rotation & set(const EulerAngles & e)
Rotation(const Hep3Vector & axis, delta)
Rotation & set(const Hep3Vector & axis, delta)
Rotation(const AxisAngle & ax)

Rotation & set(const AxisAngle & ax)
Rotation(colX, colY, colZ)

Rotation & set(colX, colY, colZ)

Rotation & setRows(rowX, rowY, rowZ)
Rotation(const ZMpvRep3x3 & rep)
Rotation & set(const ZMpvRep3x3 & rep)

phi() theta() psi()
eulerAngles()

axis() delta()
axisAngle()
colX() colY()
rowX() rowY()

xx() xy() xz()
yx() yy() yz()

zx() zy() za()
HepRep3x3 rep3x3()

HepRep4x4 repdx4()

colZ()
rowZ()

5}
55
95
95
54
54
o4
54

> see eqn.
> see eqn.
> see eqn.
> see eqn.
> see eqn.
> see eqn.
> see eqn.
> see eqn.

> see eqn. 55,149,146
> see eqn. 55,149,146

> see eqn. 54,145

And the matrix elements of a HepRotation may be accessed using two
integer indices in parentheses or square brackets, with indices running from 0

to 2.

The following methods alter one component of a HepRotation, in some
way of viewing that rotation:

e setPhi(HepDouble) setTheta(HepDouble) setPsi(HepDouble)

eqn. 138
set Axis(Hep3Vector) setDelta(Hep3Vector)

> see

> see eqn. 137

1.7 HepRotation Classes 17

Use of HepRotation as a 4-Rotation

The HepRotation may be considered to be a 4-rotation. Thus, other acces-
sors applicable to HepLorentzRotation (see section (1.9)) may be applied to
HepRotation as well.

Operators and Methods

e Rotation & operator*=(r)
e friend Rotation operators(rl, r2)

e static HepDouble getTolerance() > see eqn. 160
e static HepDouble setTolerance(tol)

e bool isNear(r, epsilon) > see eqn. 154
e HepDouble howNear(1) > see eqn. 154
e HepDouble distance2(r) > see equ. 155
erl==r2 rl!=12

erl>12 rl>=12 rl <r2 rl <=12 > see eqn. 162
e Hep3Vector operator() (const Hep3Vector & v) > see eqn. 139
e Hep3Vector operator® (const Hep3Vector & v) > see eqn. 139
e LorentzVector operator() (const LorentzVector & p) > see eqn. 139
e LorentzVector operator® (const LorentzVector & p) > see eqn. 139

HepDouble norm?2() > see eqn. 157
HepDouble isldentity()

ostream & print (ostream & os)

ostream & operator<<(ostream & os, const RotationInterface & r)
rectify() > see eqn. 169

The Rotation Group

The following methods use HepRotations as a group, that is, they invert,
multiply, and so forth:

e Hep3Rotation operator® (const Hep3Rotation & r) > see eqn. 164
e operator*=(const Hep3Rotation & 1) > see eqn. 164
e transform (const Hep3Rotation & r) > see eqn. 166
e RotateX (delta) RotateY (delta) RotateZ (delta) > see eqn. 167
e RotateAxes (newX, newY, newZ) > see eqn. 168
e invert()

e HepRotation inverse()

e HepRotation inverseOf(r)

18 1 AVAILABLE CLASSES AND METHODS

Axial Rotations

There are threee specialized rotation classes, HepRotationX, HepRotationZ,
and HepRotationZ. These use substantially less storage than the general HepRotation,
and for some methods it is quicker to work with a specialized axial rotation
rather than the general case.
All information which can be obtained from a general HepRotation can
be obtained from any of these specialized axial rotations. However, the set
of methods which modify the rotations are very restricted for the specialized
cases:

e RotationX()
e RotationX(delta) > see eqn. 53
e RotationX & set(delta) > see eqn. 53
e RotationY()
e RotationY(delta) > see eqn. 52
e RotationY & set(delta) > see eqn. 52
e RotationZ()
e RotationZ(delta) > see eqn. 51
e RotationZ & set(delta) > see eqn. 51

1.8 Rotation Class — Derived from HepRotation

The Rotation classes (which also include RotationX, RotationY, and RotationZ)
provide backward compatibility with the original ZOOM PhysicsVectors pack-
age. These are simply typedefs the corresponding CLHEP classes, in the ap-
propriate namespace. This is because there were no features or constructors
in the ZOOM product which were felt to be overkill in the CLHEP context.

The Rotation.h header in the ZOOM area also defines ZMpvRep3x3, ZMpvRep3x3,
and ZMpvRep3x3 which are typedefs for the corresponding CLHEP structs.

1.9 HepLorentzRotation Classes

There are three sorts of Lorentz transformation objects suppoprted: General
HepLorentzRotations, pure Lorentz boosts HepBoost, and pure boosts along
axes HepBoostX, HepBoostY, HepBoostZ.
(Technically, ordinary HepRotations and axial rotations can also be con-
sidered as Lorentz transformations, and indeed one of those classes can be used
wherever a general Lorentz transformation is called for. The class Hep4RotationInterface
represents the abstract concept. But the rotation classes have been defined
above, so we will restrict this section to discussing transformations involving
the time component.)

1.9 HepLorentzRotation Classes 19

Throughout this section, arguments named 1t, 1t1, 1t2, etc., are of type
HepLorentzRotation, arguments named b, b1, b2, etc., are of type HepBoost,
and arguments named 1, rl, 12, etc., are of type HepRotation. Arguments

named R can be any sort of Hep4RotationInterface including HepLorentzRotations,

boosts, rotations, and axial boosts and rotations. Also, rowl, row2, row3,
row4, coll, col2, col3, cold will represent HepLorentzVector arguments.

Constructors and Accessors—HepLorentzRotation

HepLorentzRotation()

HepLorentzRotation (1t)

HepLorentzRotation (1)

HepLorentzRotation (R)

HepLorentzRotation & operator=(1t)
HepLorentzRotation & operator=(r)
HepLorentzRotation & operator=(R)
HepLorentzRotation & set(1t)

HepLorentzRotation & set(r)

HepLorentzRotation & set(R)

HepLorentzRotation (Hep3Vector boostVector)
HepLorentzRotation (HepBoost boost)
HepLorentzRotation (boostX, boostY, boostZ)
HepLorentzRotation & set (Hep3Vector boostVector)
HepLorentzRotation & set (HepBoost boost)
HepLorentzRotation & set (boostX, boostY, boostZ)

HepLorentzRotation (b, r) > see eqn. 178
HepLorentzRotation & set(b, r)
HepLorentzRotation (r, b) > see eqn. 179

HepLorentzRotation & set(b, r)

HepLorentzRotation(coll, col2, col3, col4)
HepLorentzRotation & set(coll, col2, col3, cold)
HepLorentzRotation & setRows(rowl, row2, row3, row4)
HepLorentzRotation(const HepRepdx4 & rep)
HepLorentzRotation & set(const HepRep4x4 & rep)
print (ostream & os)

Constructors and Accessors—HepBoost

HepBoost()

HepBoost(b)

HepBoost & set(b)

HepBoost (const Hep3Vector & direction, beta) > see eqn. 171
HepBoost & set(const Hep3Vector & direction, beta)

20

1 AVAILABLE CLASSES AND METHODS

HepBoost (const Hep3Vector & betaVector)

HepBoost & set(const Hep3Vector & betaVector)

HepBoost (betaX, betaY, betaZ)
HepBoost & set(betaX, betaY, betaZ)

HepBoost(const HepRep4x4Symmetric & rep)
HepBoost & set(const HepRep4x4Symmetric & rep)

Constructors and Accessors—Axial Boosts

HepBoostX()
HepBoostX(beta)
HepBoostX & set(beta)
HepBoostY()
HepBoostY(beta)
HepBoostY & set(beta)
HepBoostZ()
HepBoostZ(beta)
HepBoostZ & set(beta)

Components and Decomposition

Also,

decompose(HepBoost & b, HepRotation & r)
decompose(HepRotation & r, HepBoost & b)
coll(') col2() col3() cold()

rowl() row2() row3() rowd()

wx() xy()) xt()

yx() yy() vz() yt()

wx() ay() 7a() ()

tx() ty() tz() tt()
HepRep4x4 repdx4()

> see eqn. 171

> see eqn. 171

> see eqn. 170

> see eqn. 178
> see eqn. 179

ostream & operator<<(ostream & os, const Hep4RotationInterface &

It)

components can be accessed by C-style and array-style subscripting:

o 1t[i]j]
o 1t(i,j)

The following are applicable to HepBoost but not to HepLorentzRotation:

Hep3vector direction() beta() gammaf()
Hep3Vector boostVector()
HepRep4x4Symmetric rep4dx4Symmetric()

> see eqn. 178
> see eqn. 178

1.9 HepLorentzRotation Classes

Application to 4-vectors

e LorentzVector operator™ (const LorentzVector & w)
LorentzVector operator() (const LorentzVector & w)

Comparisons and Nearness

o Itl == 1t2 Itl1 !=1t2 > see eqn.

o It1 > 1t2 1t1 >=1t2 Itl < It2 Itl <= 1t2 > see eqn.

e isldentity()

e getTolerance() > see eqn.

e setTolerance(tol)

e int compare(lt) > see eqn.

e bool isNear(It, epsilon) > see eqn. 172,

e double distance2(1t) > see eqn. 173,

e double howNear(1t) > see eqn. 173,

e double norm2() > see eqn. 175,
Arithmetic in the Lorentz Group

o It1 * 1t2

e HepLorentzRotation & operator*=(1t)

e HepLorentzRotation & operator*=(b)

e HepLorentzRotation & operator*=(r)

e HepLorentzRotation & transform (1t) > see equ.

e invert()

e HepLorentzRotation inverseOf(It)

e HepLorentzRotation & rotate (delta, axis) > see eqn.

e HepLorentzRotation & rotateX (delta)

e HepLorentzRotation & rotateY (delta)

e HepLorentzRotation & rotateZ (delta)

e HepLorentzRotation & boost (betaX, betaY, betaZ) > see eqn.

e HepLorentzRotation & boost (v) > see eqn.

e HepLorentzRotation & boostX (beta)

e HepLorentzRotation & boostY (beta)

e HepLorentzRotation & boostZ (beta)

o rectify() > see eqn.

21

184
182

160
182
180
180

180
181

187

188

189
189

190

22 1 AVAILABLE CLASSES AND METHODS

Arithmetic on Boosts

The pure boosts do not form a group, since the product of two boosts is a
Lorentz transformation which in general involves a rotation. The pure boosts
along an axial direction do form groups.

LorentzBoost inverseOf(b)

LorentzBoostX inverseOf(LorentzBoostX bx)
LorentzBoostY inverseOf(LorentzBoostY by)
LorentzBoostZ inverseOf(LorentzBoostZ bz)

e bx = bx1 * bx2
e by = byl * by2
e bz = bzl * bz2

1.10 LorentzTransformation Class — Derived from HepLorentzRotatio:

The HepLorentzRotation classes provides backward compatibility with the
original ZOOM PhysicsVectors package. It is defined in LorentzTransformation.h
in the ZOOM area, and is a typedef for HepLorentzRotation, in the appro-
priate namespace. This is because there were no features or constructors in

the ZOOM product which were felt to be overkill in the CLHEP context.

Similarly, that files establishes typedefs LorentzBoost for HepBoost, LorentzBoostX
for HepBoostX, LorentzBoostY for HepBoostY, and LorentzBoostZ for HepBoostZ.
Also, for any ZOOM users using LorentzTransformationInterface, this
is typedefed in LorentzTransformation.h as Hep4RotationInterface.

23

2 Hep3Vector and SpaceVector Classes

Hep3Vectors may be expressed as Cartesian coordinates, Spherical coordi-
nates, or Cylindrical coordinates.

(2,y,2) (1)
(T’0’¢)
x =rsinfcos o
y =rsinfsin¢ (2)
z=rcost
(P, ¢, 2)
r = pcoso

y=psing (3)
zZ =z

For Spherical coordinates one may optionally specify the pseudorapidity n
instead of 6.

<p7 ¢a77 = —Intan g) (4)

When accessing the angles in Sperical coordinates, the values obtained will
always be in the range 0 < 0 <7 and —7 < ¢ < 4.

2.1 Dot and Cross Products

Let v} and U5 be Hep3Vectors. Then:

U.dot(vh) = Uy - Uy =) Ty (5)

‘}z
U1.cross(Us) = U1 X Us Z(ij Eijk61j62k> (6)
7y diff2(7) = |7y — B (7)

Here, € is the three-index anti-symmetric symbol.

2.2 Near Equality and isOrthogonal/isParallel

We structure the definitions of near equality and orthogonal /parallel such that
they are commutative (order of vectors makes no difference), rotationally in-
variant, and scale invariant (multiplying both vectors by the same non-zero

24 2 Hep3Vector AND SpaceVector CLASSES

constant makes no difference). They also match the definitions of relative
equality (or perpendicularity or parallelism) within e for the case where each
vector is along or near an axis. This fixes the definitions, up to order e.

Let the method isNear () be represented by the symbol &, and let ¥}, 75 be
Hep3Vectors. Then:

Ty & Oy if |0 — B|” < €0, - B (8)
However, if ¢ and/or v, is known to be a UnitVector (designated as 1),
this sets a meaningful scale—if the vectors are nearly equal, they are both of
magnitude near unity. In that case a simpler absolute formula, which is which
is equivalent to order € to the relative criterion 8, is used:

Uy = Ty if |y — To)* < €2 (9)

Tests for v1.isParallel(v2) and v1.isOrthogonal(v2) utilize the dot and
cross products:

5w T

U1 H 172 lf _1, _1,)2 S 62 (10)
102
T [

v L vy if 41 E < € (11)
1 X VU2

Care is taken to avoid taking products of more than two potentially large
quantities in evaluating these. Thus these tests can be done on any vectors
which could safely be squared.

€ is assumed to be small; in some cases, short cuts are taken to determine the
result without potentially generating large quantities. These techniques are
not necessarily faithful to the above formulae when € > 1.

The definition of v1.isParallel(v2) is equivalent, to order €, to a simple (but
computationally more expensive) definition involving normalizing the vectors:

171 || '172 if ’@1 — '{]2|2 S 62

If one of the vectors is the zero vector, the above relations may be ambiguous
instead the following hold: (¢’ here is any non-zero vector):

T~0iff 7=0 (12)
7 L 0 for all @ (13)
7 0iff =0 (14

2.3 Measures of Near-ness 25

The default tolerance (which may be modified by the class static method
setTolerance()) for vectors and Lorentz vectors is 100 times the double pre-
cision epsilon.

Edefault ~ 221071 (15)

2.3 Measures of Near-ness

Each boolean tolerance comparison method is accompanied by a method re-
turning the measure used to compare to the tolerance €. The formulae can be
deduced from those above:

— —
U1.howNear(vh) = max M, 1 (16)
U1+ Vg
v1.howParallel(v5) = max (v_l, . 1)2 : 1> (17)
(%))
. . U1 - Uy
v1.howOrthogonal(v5) = max < —, 1) (18)
V1 X Vg

The above relative measures are limited to a maximum of 1; cases where the
denominator would be zero may safely be done without overflow. (Of course,
howParallel () and howOrthogonal () are close to zero for nearly parallel and
perpendicular vectors, respectively).

Note that since a UnitVector has a natural absolute scale, the Unitvector: :howNear ()
method is absolute, not relative. When a comparison method involves absolute
tolerance, the measure returned is not truncated at 1:

;. howNear(vh) = vp.howNear(d;) = |y — ¥ (19)

In addition, we provide deltaR(), a measure of nearness useful in collider
physics analysis. It is defined by

fideltaR () = \/(A)? + (An)?) = \/(51.phi — G.phi)? + (7} .cta — 5 cta)?
(20)
where of course the angular ¢ difference is corrected to lie in the range (—, 7]
(the deltaPhi () method is used).

When one vector or the other is zero,

26 2 Hep3Vector AND SpaceVector CLASSES

#.howNear(0) = 0.howNear(7) = 1 (21)
#.howParallel(0) = 0.howParallel(7) = 1 (22)
#.howOrthogonal(0) = 0.howOrthogonal (7)) = 0 (23)
7.deltaR(0) = 0.deltaR(7) = |An| = |7.eta()| (24)

When both vectors are zero, all these measures will return zero.

Ordering Comparisons for Hep3Vectors

The comparison operators (>, >=, <, <=) for Hep3Vector (and for UnitVector)

use a “dictionary ordering”, comparing first the Z, then the Y, then the X com-
ponents:

’171 > ’172 if
21 > 29 O
[21 = 2 and y; > y,] or

[21 = 29 and y; = y and 1 >] (25)

2.4 Intrinsic Properties and Relativistic Quantities

A Hep3Vector does not have much in the way of intrinsic properties—just its
magnitude. We can also talk about the pseudorapidity, which depends only
on the angle against the Z axis.

vimag() = /@ -0 (26)

vimag2() = -0 (27)
O — _Intan L%

vieta() = —Intan

Another intrinsic is the unit vector in the direction of v:

—

Faunit() = ’Z| (29)

A somewhat contrived intrinsic property, useful for Geant4, is a special
vector orthognal to ¥, lying in a plane defined by two coordinate axes. The
plane is chosen so as to supress the smallest component of .

min(v,, vy, v,) = v, = v.orthogonal() = {v,, —v,,0} (30)
min(vy, vy, v,) = v, = v.orthogonal() = {—v,,0,v,}

min(v,, vy, v,) = v, = v.orthogonal() = {0,v,, —v,}

2.5 Properties Involving Vectors and Directions 27

(In the case of equal components, v, is considered smallest, then v,.)

A Hep3Vector of length less than 1 may be considered as defining a Lorentz
boost; in that sense, we can discuss § and v of the Hep3Vector, and the
rapidity associated with that boost.

vibeta() = vl .mag() =p (31)
vl.gamma() = L Y (32)
V=P
vl.rapidity() = tanh™'(7, - 2) (33)
v1.coLinearRapidity() = tanh™' 8 = tanh (@ - 0y) (34)

The rapidity and pseudorapidity are discussed further in section §4.

2.5 Properties Involving Vectors and Directions

Let a reference direction be represented by a unit vector in that direction. In
all the following methods, the reference direction may be omitted, defaulting
to z. And in these methods, a non-zero second vector may be substituted for
u; the unit vector in the direction of 5 will be used in that case. Then the
following definitions of methods relative to the reference direction apply:

v.angle(@t) = 054 = cos™! (vmu) (35)

v.cosTheta(a) = cosfza (36)

v.cos2Theta(d) = cos® 054 (37)

v.eta(u) = —Intan 9;@ (38)

v.rapidity(4) = tanh ™' (7 - @) (39)

v.perp(a) = [0 — (- a)al (40)

Fperp2(a) = |0 — (7-a)al> (41)

v.perpPart(u) = v — tcosbz4 |U] =0 — (V- a)a (42)

v.project() = tcos by, [U] = (V- u)a (43)

v.polarAngle(v3) = U.polarAngle(v3, 2) = v3.theta() — ¢.theta() (44)
v.polarEta(vy) = v.polarEta(vs, 2) = vs.eta() — v.eta() (45)
v.polarAngle(vy, 4) = vs.eta(t) — v.eta(u) (46)

v.azimAngle(vy) = v.azimAngle(vy, 2) = vy.phi() — d.phi()* (47)
v.deltaPhi(v3) = v.azimAngle(v3) (48)

v.azimAngle(v3, 4) = 055 perpPart(a)s.perpParta) S8R (a-(Ux03)) (49)

28 2 Hep3Vector AND SpaceVector CLASSES

* Equation (47) is not quite definitive: The azimuthal angle between two
vectors (or delta phi) will always be translated into an equivalent angle in the
range (—m, 7.

The azimuthal angle between two vectors with respect to a reference di-
rection, as shown in equation (49) above, is found by projecting both vectors
into the plane defined by the reference direction, and taking the angle between
those projections, in the clockwise sense about the reference axis. Again, this
will be in the range (—m, 7).

2.6 Direct Vector Rotations

Direct vector rotations are methods of Hep3Vector or HepLorentzVector
which modify the vector being acted upon—v.rotate(¢, §,1))—or global func-
tions which form a new vector—rotation0f (v, ¢, 0,).
Rotations about the X, Y, or Z axis are defined in the counter-clockwise sense.
Thus for rotations about the Z axis, if ¥ has representation in polar coordinates
(UT’ Vo, U¢>)

v.rotateZ(d) is equivalent to vy => Uy + 0 (50)
The axis rotations are implemented taking advantage of their simple form.
When ¢ = (x,y, z) is rotated by angle ¢,

v.rotateZ(0) = (zcosd — ysind, xsind + ycosd, z) (51)
v.rotateY(0) = (zsind + x cos d, y, zcos § — xsind) (52)
v.rotateX(0) = (x,y cosd — zsind,ysind + z cosd) (53)

More general rotations may be expressed in terms of an angle § (counter-
clockwise) about an axis given as a UnitVector «, or in terms of Euler Angles

(¢,6,v):

v.rotate(u, §) =

cosd + (1 —cosd)u? (1 —cosd)uzu, —sindu, (1 — cosd)u,u, + sindu, Vg

(1 —cosd)uyug +sindu, cosd+ (1 —cosd)u; (1 — cosd)uyu, — sin du, vy

(1 —cosd)uu, —sindu, (1 — cosd)u,u, +sindu, cosd + (1 — cosd)u? v,
(54)

v.rotate(¢, 8, 1) =

cos Y cos ¢ — sin v cos 0 sin ¢ cossing +siny cosfcos¢p sinysinfd Vg
—siny cos ¢ — cosycosfsing —siny sing + cospcosf cos¢ cossinf Uy
sin # sin ¢ —sin 6 cos ¢ cos 6 Uy

(55)

2.6 Direct Vector Rotations 29

The Euler angles definition matches that found in found in Classical Me-
chanics (Goldstein), page 109. This treats the Euler angles as a sequence
of counter-clockwise passive rotations; that is, the vector remains fixed while
the coordinate axes are rotated—mnew vector components are computed in new
coordinate frame. It is unnatural (though possible) to view an Euler angles
transformation as as sequence of active rotations.

HEP computations ordinarily use the active rotation viewpoint. There-
fore, rotations about an axis imply active counter-clockwise rotation in this
package.

Consequently, a rotation by angle 6 around the X axis is equivalent to a
rotation with Euler angles (¢ = ¢ = 0, # = —4§) and a rotation about the Z
axis is equivalent to a rotation with Euler angles (0 =0, ¢ = ¢ = —§/2).

RotateUz

Another way to specify a direct rotation is via v.rotateUz(u) where u is
required to be a unit Hep3Vector. This rotates the reference frame such
that the original Z-axis will lie in the direction of 4. Many rotations would
accomplish this; the one selected uses u as its third column and is given by:

v.rotateUz(uy, uy, u,) =

Ul UL —Uy /UL Uy Uy
Uyl /Uy Upful Uy (56)
—U 0 U, v,

Here, u; = \/u2 +u2. Using u as the third column of the rotation removes

the ambiguity except if u is parallel to Z. In that case, if u = Z the vector ¥ is
left untouched, while if u = —2, If uis —Z, ¥ is rotated by 180 degrees about
the Y axis.

Applying HepRotations to Hep3Vectors

In CLHEP, the Hep3Vector class is aware of the existence of the HepRotation
class. This is reflected in two routines to apply a HepRotation to the Hep3Vector:

v*=R

U.transform(R)

}<:>17<—RU (57)

Notice that these are identical. In contrast to the usual operator *= seman-
tics, v.*= R left multiplies the matrix representing v by the matrix repre-
senting R.

30 3 HepLorentzVector CLASS

2.7 Overflow for Large Vectors

When vector components are near the limits of floating point representation,
there are cases where operations have mathematical results which can be rep-
resented, but intermediate steps give too large a result. An extreme example
is that testing whether two vectors are nearly orthogonal should give a result
of type bool, yet the intermediate steps may involve a dot product adding
three huge terms.

Although each of the vector operations described above can be performed
protecting against overflow (by judicious re-scaling) this generally leads to
unacceptable inefficiency in the overwhelming majority of cases where the
vectors are not so large. The compromise used in this package is:

e All vectors are assumed to be “squarable,” that is, the algorithms may
freely take a dot product of a vector with itself. For double numbers,
this implies that components are limited to about 105 in magnitude.

e Care is taken that any operation, applied to squarable vectors, gives
the proper result. This implies that we never take products of more
than two powers of components without checking for size and potentially
re-scaling. In particular, isParallel() and isOrthogonal() do extra
work to avoid trouble when vectors have components on the order of 107
to 1092

3 HepLorentzVector Class

We always take the time component to be the ‘4’ index, and ¢ = 1. For
these equations, let the sense of the metric be M = 41 and the metric be
represented as g;; where g4y = M, g;; = —M, and all other g;; = 0.
Let wy and wy be HepLorentzVectors. Then w;.dot(wy) is defined by:
Wi - Wy = Zgijwiwé (58)
]
The sign of this dot product is dependent on M.

For the remainder of these definitions we will take the metric to be (— —
— +) and point out any definitions which change sign when the (+ + + —)
metric is chosen.

3.1 Combinations and Properties of HepLorentzVectors

The dot product, and Lorentz-invariant magnitude squared and squared norm
of the difference between two 4-vectors, are metric-dependent.

3.2 Kinematics of HepLorentzVectors 31

Let w; = (’l_};, tl)

59)
60)
61)

)

wl.dot(wg) = Wi - Wy = tltg — ’171 . 172
wy.mag2() = wy - wy =5 — |v7)?
wldlff2(w2) = (’LUl — IUQ) . (w1 — wg) = (tl — t2)2 — |171 — 172|2

(
(
(
(62

)/ [t — o]

wy.mag() = w;.m() = sign(t; — o 0%

The Euclidean-norm, and Euclidean-norm difference squared, are given by

w;.EuclideanNorm2() = 5 + |7, |? (63)
wy.EuclideanNorm() = /% + |07 |? (64)
wy.delta2BEuclidean(wsy) = tits + ¥ - Uy (65)

It is convenient to have methods returning ¢ & z; for completeness we also
provide the plus() and minus() methods relative to an arbitrary direction :

wy.plus() =t + 21 (66)
wy.minus() = t; — 2 (67)
wy.plus(a) =t; + v - (68)
wy.minus(a) =t — Uy - U (69)

3.2 Kinematics of HepLorentzVectors

The rest mass and its square are independent of metric. Note that restMass2()
differs from mag2() in that no matter which metric is selected, restMass2()
remains t2 — v2. The sign of the rest mass is set to match the time component;
thus the rest mass of (0,0,0, —m) will return as —m.

The method resté4Vector () will return a 4-vector equal to this vector in
its rest frame.

p.restMass2() = p.invariantMass2() = E* — |p]? (70)
p.restMass() = p.invariantMass() = / E? — |p]? x sign(t;) (71)
p.rest4dVector() = (0,0, 0, p.restMass()) (72)

Taking the rest mass of a spacelike 4-vector will ZMthrow the exception
ZMxpvSpacelike.

32 3 HepLorentzVector CLASS

The boost which if applied to w.rest4Vector() would give the result w is
w.boostVector (). A pure boost can be expressed as a Hep3Vector:

—

wy.boostVector() = v
1
(w.rest4dVector()) .boosted (w;..boostVector()) = w;

(73)

The boostVector for a zero 4-vector will return as zero. boostVector () will re-
turn v/t even if the 4-vector is spacelike, but will ZMthrow a ZMxpvTachyonic
error. If ¢ = 0 it will throw ZMxpvInfiniteVector and do the divisions,
returning an infinite vector if ignored.

Beta and gamma refer to this boost vector:

wy.beta() = f = |w;.boostVector()| = ”:1“ (74)
1

wi.gamma() = 7 = ——— (75)

VI— 7

Psuedorapidity and rapidity are discussed below (§4):

wy.eta() = —Intan 5 (76)

wi.eta(u) = —In tanﬁ'za (77)

wy.rapidity() = ;ln (g t ii) = tanh™? ; (78)
wy.rapidity(u) = ;ln (M) = tanh™! 17;1 (79)
wy.coLinearRapidity() = ;ln (gt }i:) = tanh ™" ‘:| (80)

The “transverse mass” is found by neglecting the x- and y-components of the
4-vector. This is the square root of the sum of the rest mass squared and the
transverse momentum squared:

pmt2() = E* — p? (81)

pt() = y/|E* — |pI?] x sign(E* — [p]*) (82)

Note that m; > m. Warning: Although this definition for m; matches that
of equation (34.36) in the Review of Particle Physics and this definition has
always been in CLHEP, some experimenters have indicated that various experi-
ments may use different definitions, which are of more use to their applications.

3.3 Invariant Mass and the Center-of~-Mass Frame 33

The “transverse energy” is defined as E'sinf. This quantity is invariant, to
order m/E, under boosts in the Z direction. It is most easily expressed in
terms of the energy, momentum, and transverse momentum:

E2 2
p.et2() = p; (83)
p]
E2p? _
pet() = ‘ |p|2L x sign(E) (84)

For completeness, the transverse mass and energy are also defined with respect
to a direction specified by a Hep3Vectorv:

pmt2(v) = E? — (p'- 9)? (85)
pmt(0) = \J|E? — (7 9)2] x sign(E* — (5 0)*) (86)
E?p.perp(0)?

p.et2(v) = 87
(V) BE (87)
E?p. 0)?
pet(7) = J’“T‘Tfm « sign(E) (88)
p
3.3 Invariant Mass and the Center-of-Mass Frame
The invariant mass of a pair of HepLorentzVectors is given by:

wy.invariantMass2(wsy) = (t1 + tg) |y — 172]2 (89)
wy.invariantMass(ws) = (1 + t2)* — |0y — Ta|” x sign(ty + t2) (90)

The boost necessary top bring a pair of vectors into their Center-of-Mass
frame is given by

U1 + Uy
t1 + to

wy.findBoost ToCM (ws) = — (91)

If the sum of the two 4-vectors is spacelike, this makes analytic sense but is
physically meaningless; a ZMxpvTachyonic error will be ZMthrown. If the
sum of the time components is zero, a ZMxpvInfiniteVector error will be
ZMthrown.

34 3 HepLorentzVector CLASS

3.4 Various Forms of Masses and Magnitudes

The HepLorentzVector class combines the features of the CLHEP and ZOOM
4-vectors. Each of these deal with several concepts related to the magnitude
or “mass” associated with the 4-vector.

This is further complicated by the possibility that the metric, normally
taken to be (— — — +) which we designate as M = +1, can be set to (+ + +
—) which we will designate as M = —1. So some of the definitions below will
involve M. In the CLHEP original package, of course, M would always be
+1.

These methods are defined above, but perhaps it will be helpful to provide
them all in one place. In the below definitions, since we are conceptually
dealing with energy-momentum 4-vectors, we will use (p,e) for the 4-vector
components.

w.mag2() = w.dot(w) = M(E? — %) (92)
wm2() = E* — p* (93)
wmag() = wm() = sign(E* —)BT — ol (94)
w.invariantMass2() = w.restMass2() = E* — [p]? (95)
w.w.invariantMass() = w.restMass() = sign(E)y/E? — |p]? (96)
wmt2() = E? — p? (97)
want() = sign(E* —) IEE 2 (98)

_ Bt
w.et2() = e (99)

= g X sign

w.et() = | e gn(F) (100)

Thus a tachyonic particle (for which ¢* — v? < 0) is assigned a negative mass
m(), but a positive restMass().

3.5 Direct HepLorentzVector Boosts and Rotations

Direct boosts and rotations are methods of HepLorentzVector which modify
the 4-vector being acted upon— e.g., w.boost(u,)—or global functions which
form a new vector— e.g., boost0f(w, @,).

Rotations act in the obvious manner, affecting only the ¥ component of
the 4-vector—see §2.6.

In analogy with our “active” rotation viewpoint, boosts are treated as
“active” transformations rather than transformations of the coordinate system.

3.5 Direct HepLorentzVector Boosts and Rotations 35

That is, if you take a 4-vector at rest, with positive mass (t), and boost it by
a positive amount in the X direction, the resulting 4-vector will have positive
x.

Boosts along the X, Y, or Z axis are simpler than the general case. Let
w = (0,t) = (x,y, 2, t):

w.boostX(B) = (yx + pt,y, 2,7t + Byx) (101)

w.boostY(B) = (x,vy + Bt, 2,7t + Byy) (102)

w.boostZ(B) = (z,y, vz + Byt, vt + Byz) (103)
1

TEVI=R

More general rotations boosts may be expressed in terms of § along an
axis given as a Hep3Vector @ (which will be normalized), or in terms of a
Hep3Vector boost 3, which must obey |§| < 1. (Boosts beyond the speed of
light ZMthrow a ZMxpvTachyonic error, and leave the 4-vector unchanged if
this is ignored.)

For the axis (@,) form,

t «— ~t+pyv-u (104)
U o U+ [T+ pt]
-t
=T
For the boost vector (§) form,
t «— At4+r7-5 (105)
- 17—1—['75;27 54—715]5
1
T = =
1—16?

Applying HepRotations and HepLorentzRotations to Hep3Vectors

In CLHEP, the HepLorentzVector class is aware of the existence of the
HepRotation and HepLorentzRotation classes. This is reflected in routines
to apply these the HepLorentzVector:

*:

p

p.transform(R) } =P fip (106)

36 3 HepLorentzVector CLASS

Notice that these are identical. In contrast to the usual operator *= seman-
tics, p *= R left multiplies the matrix representing p by the matrix repre-
senting R.

3.6 Near-equality of HepLorentzVectors

We keep in mind that the prime utility of isNear () and related methods is
to see whether two vectors, which have been created along two computational
paths or from two sets of fuzzy quantities, ought mathematically to be taken
as equal. Relative tolerance is needed, and this is more involved than just
checking for approximate equality in the time and space sectors respectively.
For example, though no non-zero vector can be near the zero vector, (€,t = 1)
with € a very small vector should be considered close to (0, = 1).

The temptation is to use, as the normaliztion to determine relative near-
ness, the length |[0]> + ¢2. Let us call this the Euclidean norm, since it is the
norm in complex 4-space (¥/,4t). This is not Lorentz invariant, but for many
purposes is a good criteria for calling two 4-vectors close. We use the Euclidean
norm to define isNear () for LorentzVectors; it has the virtue of simplicity
and can be applied to any 4-vectors. Let the method isNear () be represented
by the symbol ~:

W1 R Wy < |171 — 172|2 + (tl — t2)2 S 62

t + 122
|z71-62|+(122)] (107)

This definition not Lorentz invariant, but it is (to order € x) independent
of frame within the space of small Lorentz transformations. It turns out to
be impossible to find a definition which is Lorentz invariant for all possible
4-vectors, under arbitrarily large boosts, and still behaves like a measure of
near-ness.

A second useful definition, which is Lorentz invariant, but is sensibly ap-
plicable only to timelike 4-vectors, is to look at the Euclidean norm of the
difference of two vectors in their Center-of-Mass frame. This is intuitively ap-
pealing to HEP practitioners; we make this method available as well, calling
it isNearCM().

Let the method isNear () be represented by the symbol ~, and the method
isNearCM() be represented by the symbol X, Let w1, Wy be LorentzVectors.
Also, let 7;,t; be the space vector and time components of w;. Then using the
boost vector to the joint center of mass frame

|+ 5
t +

b= (108)

3.7 Other Boolean Methods for HepLorentzVectors 37

and assuming that [b] < 1 so we can take

B =1 (109)

1
v= N (110)

we define the condition

-,

Wy R Wy = (wl.boost(b)) ~ (wg.boost(l;)) (111)

As mentioned earlier, this criterion makes sense only for timelike 4-vectors.
If applied to 4-vectors whose sum is not timelike, the isNearCM() method will
return a test for exact equality.

CM

if |0y + 01| > |t1 + t2| then w; = w|2 <= w; = vy (112)

DeltaR for HepLorentzVectors

Another method to compare two HepLorentzVectorsis wl.deltaR (w2), which
acts only on the 3-vector components of the HepLorentzVectors and applies
deltaR as defined by equation (20).

Ordering Comparisons for HepLorentzVectors

The comparison operators (>, >=, <, <=) for HepLorentzVector act by
comparing first the time component, then the Hep3Vector part. The latter
comparison is done using definition (25).

w1 > Wa if t1 >ty or [tl =ty and 171 > 172] (113)

3.7 Other Boolean Methods for HepLorentzVectors

The wi.isParallel (w2) method works with a relative tolerance. If the differ-
ence of the normalized 4-vectors is small, then those 4-vectors are considered
nearly parallel. For this purpose, we use the Euclidean norm to define the
normalization and size of difference.

Let
_ w1
W = ——-
SNTACE?
_ wq
W

SN FARER"

38 3 HepLorentzVector CLASS

and
Wy — Wy = (V12, t12)

then
wy || wy iff [O1a]® + Try < € (114)

As in the case of Hep3Vectors, only the zero 4-vector is considered parallel
to the zero 4-vector.

w | (0,0,0,0) iff w = (0,0,0,0) (115)

The wl.howParallel (w2) method, applied to two non-zero HepLorentzVectors,
returns the Euclidean norm of the differnce. This can range from zero (if w2
is a positive multiple of wl) to 2 (if w2 is a negative multiple of w1). If both
HepLorentzVectors are zero, wl.howParallel (w2) returns zero; if one is zero,
it returns 1.

The boolean tests isSpacelike(), isTimelike(), and isLightlike(),
work with the restMass2() function, which returns ¢* — |v]2.

w.isSpacelike() <= t* — |0]* < 0 (116)
w.isTimelike() <= t* — |9]* > 0 (117)

The test for isLightlike () uses a tolerance relative to the time component
of the vector. It determines if, starting from an exactly lightlike vector, you
can perturb ¢ and v by a small relative amount to reach the actual vector.

w isLightlike() <= |¢* — [0]?] <= 2¢t” (118)

The 2¢t? limit is chosen such that (0,0, (1 & €)¢,¢) is just on the boundary of
being considered lightlike.

Since the isLightlike () method is tolerant of small perturbations, these
three methods are not mutually exclusive: A 4-vector can test true for isLightlike ()
and either isSpacelike() or isTimelike() as well.

By these definitions, the zero 4-vector is considered lightlike.

3.8 Nearness measures for HepLorentzVectors

Since both isNear() and isNearCM() for HepLorentzVectors use relative
tolerance, the corresponding nearness measures are truncated at a maximum
of 1:

39

|0y — | + (t1 — t3)?
2
’U1 1)2| + (t1+t2)

wy.howNearCM (wq) = (wl.boost(b)) howNear (wl.boost()) (120)

wy.howNear(wy) = max , 1 (119)

with, as before, the boost vector b given by

|U] + s
i1 + to

h— —

For two unequal HepLorentzVectors, wl.howNearCM(w2) will return 1 if the
boost to the rest frame is tachyonic.

The wl.isParallel(w2) and w.isLightlike() methods also work with
a relative tolerance. The corresponding measures are defined by:

wy.howParallel(wy) = max (\/ T1a)* + 175 1) (121)

(where the notation used is that use for equation 114).
If w=(v,t)

t?
w.howLightlike() = max <| 2tlv‘ | : 1) (122)

As before, if this measure is very nearly zero, the 4-vectors are nearly parallel
or the 4-vector is nearly lightlike.

When one of the 4-vectors (but not the other) is zero,

w.howNear(0) = 0.howNear(w) = 1 (123)
w.howNearCM(0) = 0.howNearCM(w) = 1 (124)
w.howParallel(0) = 0.howParallel(w) = 1 (125)
0.howLightlike() = 0 (126)

When both 4-vectors are zero, the nearness measures will all return zero.

4 Pseudorapidity, Rapidity and CoLinearRa-
pidity
Pseudorapidity (conventionally labelled 1) and rapidity are properties which

apply to both Hep3Vectors and HepLorentzVectors. Pseudorapidity and ra-
pidity are defined relative to the z direction.

40 4 PSEUDORAPIDITY, RAPIDITY AND COLINEARRAPIDITY

The pseudorapidity eta of either a HepLorentzVector or a Hep3Vector
is defined in terms of the angle the 3-vector part forms with the Z axis: This
can be found knowing nothing of the mass of a particle, and in the limit of
large momentum is approximately the same as the true rapidity. Unlike the
case for rapidity(), eta() makes mathematical sense for any vector—it a simple
function of the tangent of the angle between the vector and the Z axis. The
pseudorapidity of a zero vector will be assigned the value zero.

Let v7 be a Hep3Vector, and w; be a HepLorentzVector with decompo-
sition (¢,7). And let the angle formed between the Z axis and 0] or ¥ be 0.
Then:

vi.eta() = — lntang (127)
wy.eta() = — lntang (128)

The true rapidity of a LorentzVector is defined (see the Kinematics section
of the Review of Particle Properties, page 177 in the 1997 version) such that
the rapidity transforms under a boost along the Z azis by adding the rapidity
of the boost: This treats the LorentzVector as a timelike 4-momentum (using
the t and z components as F and p,).

In analogy with the familiar definition for HepLorentzVector, the rapidity
of a Hep3Vector is defined with respect to the z direction. Mathematically,
this is the same as the rapidity of a 4-vector (¥, 1).

Letting wy be (z,y, z,t) or (ps, py, Pz, E),

1 E+p,
wy.rapidity() = 5 In (E i_i > = tanh™* % (129)
vy.rapidity() = tanh™! (%, - 2) (130)

The shape of a rapidity distribution is a invariant under boosts in the z di-
rection. Pseudorapidity can always be determined from direction information
alone, and when p? > m? and the time component is positive pseudorapidity
matches rapidity to order m?/p?.

Although the z direction is special for many HEP uses, rapidity and pseu-
dorapidity can be defined with respect to an arbitrary direction 4. Letting w,
be (¥, t):

wy.eta(u) = —In tan]% (131)

41

A~ ~

vi.eta(u) = —Intan U12. “ (132)

1 (E+p-i -
wy.rapidity(u) = 5 In <E——F§’z> = tanh™! % (133)
vy.rapidity(u) = tanh™ (7} - @) (134)

Relativity texts discuss rapidity along the direction of the vector. This concept
can apply to Hep3Vectors or HepLorentzVectors. This function adds when
you compbine two boosts in the same direction.

Such a method may not be needed for typical HEP calculations but is pro-
vided for completeness. To distinguish this from the rapidity with respect to a
specific direction—or a default rapidity, which is with respect to Z—the pack-
age names the rapidity along the direction of the vector coLinearRapidity().

v1.coLinearRapidity() = tanh™" 3 = tanh™" |¢]] (135)
1 E
wy.coLinearRapidity() = 5 In (;}ﬂ) = tanh ™! ‘:’ (136)

The co-linear rapidity of a 3-vector is inherently non-negative; for a 4-vector
it will have the same sign as the time component of the 4-vector.

5 HepRotation Class

HepRotations may be expressed in terms of an axis u and angle ¢ of counter-
clockwise rotation, or as a set of three Euler Angles (¢, 6,1). Definitions and
conventions for these classes match those described in §2.6 for directly rotating
a Hep3Vector:

HepRotation(a, §) =

cosd + (1 —cosd)u? (1 —cosd)uyu, —sindu, (1 — cosd)u,u, + sindu,
(1 —cosd)uyug +sindu, cosd+ (1 —cosd)u; (1 — cosd)uyu, — sindu,
(1 —cosd)u,u, —sindu, (1 —cosd)u,u, +sindu, cosd + (1 — cosd)u?
(137)

HepRotation(¢, 8, 1) =

cos 1 cos ¢ — sin v cos B sin ¢ cossing +siny cosfcos¢p sinysinfd
—siny cos g — cosycosfsing —sinysing + cospcosf cos¢ cossinf
sin # sin ¢ —sin 6 cos ¢ cos 6
(138)

42 5 HepRotation CLASS

The Euler angles definition matches that found in found in Classical Me-
chanics (Goldstein), page 109. This treats the Euler angles as a sequence
of counter-clockwise passive rotations; that is, the vector remains fixed while
the coordinate axes are rotated—mnew vector components are computed in new
coordinate frame.

HEP computations ordinarily use the active rotation viewpoint. There-
fore, rotations about an axis imply active counter-clockwise rotation in this
package.

Consequently, a rotation by angle § around the X axis is equivalent to a
rotation with Euler angles (¢ = ¢ = 0, § = —J) and a rotation about the Z
axis is equivalent to a rotation with Euler angles (# =0, ¢ =1 = —§/2).

5.1 Applying Rotations to Vectors and 4-Vectors

A HepRotationmay be applied to a Hep3Vectorusing either of two notations:

R *v=R(v) = RV (139)

where R is the matrix representing R, as in equation 138 or 137. The same
syntaxes may be used to apply a HepRotationto a HepLorentzVector—the
rotation matrix acts on the space components of the 4-vector.

Note that R *= v is meaningless and not supported. Also note the warning
given earlier: *=R <= ¥ = R*v

5.2 Axial Rotations

The special case rotations along the X, Y, and Z axes will often be speci-
fied by just the rotation angle 6. Thus a HepRotationX, HepRotationY, or
HepRotationZ with angle § would be represented by the matrix

1 0 0
HepRotationX(§) = [0 cosd —sind (140)
0 sind cosd

cosd 0 sind
HepRotationY(d) = 0 1 0 (141)
—sind 0 cosd
cosd —sind 0

HepRotationZ(d) = | sind cosd 0 (142)
0 0 1

(143)

5.3 Expressing a HepRotation as HepAxisAngle or HepEulerAngles 43

A HepRotation is an object in its own right; two HepRotations may
be multiplied, tested for near equality, and so forth. Multiplication is done
by multiplying the matrix representations of two HepRotations (though for
matching axis rotations, simplifications are done to effciently compute this
product).

The matrix representing a HepRotation is orthonormal: Each row, consid-
ered as a vector, has length 1, and the dot product of any two distinct rows is
zero. This leads to a trivial inversion method—simply transpose the matrix.

When dealing with structures holding an axis and angle, or Euler angles,
we do not provide direct analogues of all rotation methods. For example,
we do not provide for multiplication of two HepAxisAngleobjects to form a
third HepAxisAngle. We do provide comparison and nearness methods for
these classes, and this document specifies whether the criteria match the cor-
responding Rotation criteria.

5.3 Expressing a HepRotation as HepAxisAngle or HepEulerAngles

It is worth noting that equations (54) and (55) are not single-valued when
extracting (4, d) or (¢, 0,1) from a Rotation matrix. We adhere to the follow-
ing conventions to resolve that ambiguity whenever forming an HepAxisAngle
from a Rotation R:

R=1=§=0,a0=2 (144)
R— (4,0)=0<d6<nm (145)

And we adhere to the following conventions to resolve that ambiguity when-
ever forming an HepEulerAngles from a Rotation R:

R—s(6,0,) =0<0<n (146

R— (¢,0,¢) —= —n<¢<m (147

R— (¢,0,¢) = —m <y <7 (14
R—(¢,0=0,v¢) = —71/2<¢p=1<7/2 (149
R— (¢,0=m¢) = —71/2<¢p=—9p<7/2 (150

o
N — N — —

Thus when supplying values for Euler angles, we return (0,0, 0) whenever the
rotation is equivalent to the identity, and return (0,7, 0) in preference to the
equivalent (7, m, 7).

In particular, special case rotations such as HepRotationX with o supplied
as zero or 7 obey these conventions: even though for 6 = 7 — |¢| a RotationX

would have Euler angles (7, d,7,), when § = 7 exactly, the Euler angles are
(0,6 =m,0).

44 5 HepRotation CLASS

These conventions for how methods return values for Euler angles do not af-
fect the user’s right to supply explicit values for or (¢, 8, 1) which may not obey
the conventions, when defining an HepEulerAngles structure or a Rotation—
it is just that when such a Rotation is read back as Euler angles, the values
will not be the ones originally supplied. Similarly, the conventions for reading
axis and angle do not affect the user’s ability to supply arbitrary (u,d) values.

Obeying the above rules, Euler angles returned for rotations about coordi-
nate axes behave as follows:

(0,-6,0) if §<0
HepRotationX(§) — { (m,0,7) if 0<d<m (151)
(0,7,0) if d=m

(+7/2,—0,—7/2) it §<0
(0,0,0) if 5=

HepRotationY(d) — (—/2.6.47/2) if 0<o<n (152)
(7/2,0,—7/2) if d=m
HepRotationZ(d) — (—6/2,0,—6/2) (153)

always assuming that J represents an angle of active rotation between —7m and
.

5.4 Nearness Measure for HepRotations, HepAxisAngles,
and HepEulerAngles

The definition used for isNear () and howNear() on Rotations has the fol-
lowing properties:

1. isNear () and howNear () use the same measure: T'wo rotations are con-
sidered near if their howNear () measure is less that e.

2. Transitivity: 7y = r9 and rl.howNear(r2) are exactly equivalent to
ro & r; and r2.howNear (r1).

3. Rotational invariance to order e: If x =r1.howNear (r2) is small, then
for any third rotation r3 (r3*r1) .howNear (r3*r2) = + O(z?).

4. For the special case of rotations that happen to be around the same
axis, the measure agrees with a natural definition for measure of rotation
about an axis (§5.4).

5.4 Nearness Measure for HepRotations, HepAxisAngles, and HepEulerAngles 45

Although it is possible to formulate a measure definition with exact ro-
tational invariance—based on sup, {|Ri(@) — R2(@)|}—this definition would
require finding the 2-norm (or the largest eigenvalue) of the matrix rir; ",

which is computationally difficult. The measure we use is the same for small
answers, and has the above desirable properties.

r1.howNear(ry) = \/3 —Tr(rirg') = [3= 1,7, (154)
ij

ri.distance2(ry) = 3 — Tr(riry ') =3 =Y 71,12, (155)
ij

r R Ty =3 — Tr(riry) < € (156)

And a norm is provided:
ry.norm2() = 3 — Tr(r) (157)

HepAxisAngles have the property that two apparently unequal forms may
be equivalent, for example if the axes are in opposite directions and one angle
is the negative of the other. Similarly, two different-looking HepEulerAngles
can represent the same rotation. To avoid a whole spectrum of special cases, we
adapt the rule that, letting T be an HepAxisAngleand = be an HepEulerAngles
structure, and R(Y), R(Z) be the corresponding HepRotations,

T;.howNear(Ts) = R (Y1) .howNear (R (T3)) (158)
=1.howNear(Z;) = R (Z;) .howNear (R (Z5)) (159)

Since for double precision computations these nearness measures cannot
count on precision to better than 1078, the default tolerance for Rotations

(which may be modified by the class static method setTolerance()) is set to
100 times that.

€defanlt = 107 (160)
Nearness for HepRotations About the Same Axis

The above definition of howNear () for two general Rotations reduces, when
both Rotations are around the same axis by angles §; and ds, to

r1.howNear(ry) = \/2 —2cos(d) —) = |01 — 02| + O ((51 — (52)3> (161)

(Note that when the two rotations are special-case coordinate axis rotations,
computing the cosine of that angle difference is trivial, given that the structures
already hold the sine and cosine of 4;.)

Although equivalent for most small angular differences to the simpler con-
cept of |6 — dz|, the definition above also properly handles the case where one
0 is near 7 and the other near —m.

46 5 HepRotation CLASS

5.5 Comparison for HepRotations, HepAxisAngles, and HepEulerAngles

It is useful to have definitions of the various comparison operators so that
HepRotations, HepAxisAngles, and HepEulerAngles can be placed into std: :
containers.

Of the three classes, HepAxisAngle has a natural meaning for ordering
comparisons, taking advantage of the ordering relation already available for
the UnitVector axes:

(’LAtl, (51) > (122,52) if 4y > ug or [ﬂl = 1l and 51 > 52] (162)

For Rotation, we could use the ordering induced by its HepAxisAngle
expression; extracting the HepAxisAngle corresponding to a HepRotation is
a fairly simple task. But that is unnecessarily complex—instead, we use dic-
tionary ordering, starting with 2z, zy, zx,yz,...,xx. This agrees with the
definition used in the orignal CLHEP Vector package.

For HepEulerAngles, rather than laboriously going over to HepRotations
and then using the induced dictionary ordering comparison, we adapt simple
dictionary ordering:

(¢1,01,9%1) > (@2, 00,1)2) if

¢1 > @ OF
[p1 = ¢ and 61 > Os] or
[(bl = ¢9 and 0, = 65 and 1, > 1/12] (163)

Because we use dictionary ordering comparisons, one HepRotation may be
considered greater than another, but if you take may Euler angles (or for that
matter their HepAxisAngle structures), the comparison may have the opposite
sense.

5.6 The Rotation Group

Inversion of a HepRotation is supported. Since the matrix is orthogonal, the
inverse matches the transpose:

R.inverse() = R™' = R
Multiplication is available in three syntaxes:

R=R1*R2=— R=R R (164)
R *= Rl — R = RR, (165)
R.transform(R1) = R = R\R (166)

5.7 Rectifying Rotations A7

To complete the group concept, the identity HepRotation can easily be
obtained; the default constructor for HepRotation gives the identity.

Two sorts of specialized transformations are available. The first transforms
by a rotation around an axis:

R.rotateX(0) = R = RotationX ()R (167)
R.rotateY(0) = R = RotationY(0)R
R.rotateZ(d) = R = RotationZ(0)R

The other specialized transformation rotates such that the original X axis

becomes a specified new X axis, and similarly for the Y and Z axes. In the
specified new axes are labeled X', Y’, Z’, this transformation is equivalent to:

X, Y. Z,
R.rotateAxes(X',Y',Z') = R=| X, Y, Z, |R (168)
X vy Z

The supplied X', Y’ and Z' must be orthonormal; no checking is done, and
if the supplied new axes are not orthonormal, the result will be an ill-formed
(non-orthogonal) rotation matrix.

5.7 Rectifying Rotations

The operations on HepRotations are such that mathematically, the orthonor-
mality of the representation is always preserved. And methods take advantage
of this property. However, a long series of operations could, due to round-
off, produce a HepRotation object with a representation that slightly deviates
from the mathematical ideal. This deviation can be repaired by extracting the
axis and delta for the HepRotation, and freshly setting the axis and delta to
those values.

R.rectify() — R.set (R.axis(), R.delta()) (169)

A technical point: If the rotation has strayed significantly from a true
orthonormal matrix, then extracting the axis is not necessarily an accurate
process. To minimze such effects, before performing the formal algorithm to
extract the axis, the rectify() method averages the purported rotation with
the transpose of its inverse. (A true rotaion is identical to the transpose of its
inverse). This in principle eliminates errors to lowest order.

6 HepLorentzRotation Class

A HepLorentzRotation may be expressed in terms of a Rotation in the space
sector, followed by a pure HepBoost along some direction. Alternatively, it may

48 6 HepLorentzRotation CLASS

be expressed as a pure boost followed by a rotation.

In any event, just as for rotations, we use the convention of active transfor-
mations changing 4-vectors (rather than transformations of a reference frame).
So a boost by 3 along the in the X direction, for example, would be represented
by the matrix

v 00 Py
LorentzBoost (/) = 8 (1) (1) 8 (170)
By 0 0 ~

A HepLorentzRotation is an object in its own right; two HepLorentzRotations
may be multiplied, tested for near equality, and so forth. Multiplication is done
by multiplying the matrix representations of two HepLorentzRotations.

The matrix representing a HepLorentzRotation is orthosymplectic: The
last (T) row, constdered as a 4-vector, has t* —|t]> = 1, each of rows X, Y, and
Z have t*>—|9]*> = —1, and the Minkowski space dot product of any two distinct
rows is zero. This leads to a trivial inversion method—simply transpose the
matrix and negate any elment with just one of its two indices refering to a
space direction.

6.1 Pure Lorentz Boosts

Definitions and and conventions for a pure boost classes match those described
in equation (104). Here we will write out the matrix in detail, for a boost
specified by b, a Hep3Vector with magnitude 0 < 5 < 1 (here we write b = fu

d~v= -~ :
and ~y \/@)

(v—=Du2+1 (y—Dugu, (yv—Dugu, Byu,

AN (v = Duyuz (v — 1)“; +1 (y—Duyu, Bryu,
LorentzBoost(pu) = (= Dwows (y— oy, (y—1)a2+1 By, 171)
Byt Bryuy Bryu. g

isNear() and howNear() for LorentzBoost

Though a pure boosts may be specified by a Hep3Vector of magnitude less than
one, we do not define a nearness measure as the (relative) measure that induced
by those Hep3Vectors. This is because two HepBoosts in the same direction
with large but quite different values of ~ should be viewed as quite different
transformations. The Hep3Vectors representing two such boosts would both
be very close to the same unit vector. That is, (.9999, 0, 0) and (.999999, 0,
0) are not very similar: The former would boost a muon to 10 GeV, while the

6.2 Components of HepLorentzRotations 49

latter would boost it to 200 GeV; yet as Hep3Vectors, (.9999, 0, 0) is equal to
(.999999, 0, 0) within a relative tolerance 107%.

LorentzBoosts have a natural scale, set by the speed of light, so absolute
rather than relative tolerances are appropriate. The correct way to measure
nearness is to find the difference between the values of vb. If 51 and 52 specify
two pure boosts By and By and v; = !

= m then

— - |12
By .isNear(Bs) < ’7161 — 7252’ < €2 (172)
B;.howNear(By) = ”Ylgl - ’ngz‘ (173)
— - 12
B .distance2(By) = ‘7151 - 7252‘ (174)
B.aorm2() = B.distance2(I) = v*3* =1 —+° (175)

Ordering Comparisons of LorentzBoosts

Any pure boost can be viewed as having a non-negative 3, and s direction.
For pure boosts in the same direction both with positive 3, we wish to order
LorentzBoosts according f:

LorentzBoost (3, > 0,4) > LorentzBoost(; > 0,1) <= (1 > [2 (176)

For pure boosts which may be in different directions, we use a comparison
condition induced by the Hep3Vectors specifying the two boosts. But in order
to match the above ordering for identical directions, we must reverse the sense
of the naive induced ordering when both vectors are negative. That is, we
want to say that the boost (-.2, -.2, -.2) is “more than” the boost (-.1, -.1, -.1).

. . (6i>0 and B > fo)
LorentzBoost (/1) > LorentzBoost (/) if or (177)

(fo<0 and fF) < fBy)

6.2 Components of HepLorentzRotations

Beyond the obvious methods returning single components, such as 1t.yt(
there is also the method rep4x4 (), which returns a struct of type HepRep4x4—
this has publicly visible data members xx_, xy_, ..., tz_, tt_. These meth-
ods may also be used for pure HepBoost boosts. For those classes, there
is also a method rep4x4Symmetric(), which returns a ten-element struct
HepRep4x4Symmetric.

For HepLorentzRotation, there are also indexing methods with syntax
1t[i]1[j] and 1t(i,j). In this syntax, the indices range from 0 to 3, with

50 6 HepLorentzRotation CLASS

the time component last. That is, 0 refers to an X component, 1 to Y, 2 to Z,
and 3 to T. If R is the four by four representation of a HepLorentzRotation
L, then:

LIO][0] = Rap LIOJ[1] = Ry L[O][2] = Ry L[O][3] = Ry
LJ0] = Ry, L[] = Ry, L[1][2] = Ry, L{][3] = Ry,
L3J[0] = Re LIBJ[1] = Ry L3][2] = Ry LI3|[3] = Ry

6.3 Decomposition of Transformations into Boost and
Rotation

A HepLorentzRotation 7" may be decomposed either into the form BR or
the form RB. Here we will refer to the first form as T = B(T)R(T) and the
second as T = R(T)B(T).

When decomposing into the product BR, the boost will have the same last
column as the HepLorentzRotation 7. Using the value of v read off T}, one
can apply equation (171) to find the matrix B(T) for that boost. Then

RT) =[BT T (178)

When decomposing into the product RB, the boost will have the same last
row as the HepLorentzRotation 7. Again one can apply equation (171) to
find the matrix (this time B(T)) for that boost. Then

R(T) =T [B(T)]" (179)

Naively applying the above equations leads to non-neglible round-off errors
in the components of the Rotation—of order 3 - 10~'* if the boost has 8 =
.95. Since a Rotation representation which is non-orthogonal on that scale
would lead to errors in distance measures of more than one part in 1077, the
decompose() method rectifies the Rotation before returning.

6.4 isNear() and howNear() for HepLorentzRotations

For HepLorentzRotations, the analog of the the Rotationmeasure (154)
would be

Ty howNear(Ty) = /4 — Te(TyT5)

This, however, would be a horrible definitition of distance since that trace
can equal 4 for very different 77 and T5. Instead, we use a definition which

6.5 Ordering Comparisons of HepLorentzRotations 51

matches the definitions (154) and (173) for HepLorentzRotations which hap-
pen to be pure boosts or pure rotations:

if T1 = BlRl and Tg = B2R2
then T7.distance2(Ty) = Bj.distance2(Bsy) + R;.distance2(Ry) (180)
T1.howNear(T,) = \/ T .distance2(T5)

The isNear () relationship uses this same measure, but when the transfor-
mations have boosts that differ by more that e, isNear () will be quite a bit
quicker since the boost portion of this formula is trivial to compute.

And, as usual, norm2() is the squared distance from the identity:

T = BR = T'.norm2() = B..norm2() + R.norm?2() (181)

6.5 Ordering Comparisons of HepLorentzRotations

The (>, >=, <, <=) comparisons of HepLorentzRotations are defined as
those induced by the decomposition 7' = BR, comparing the pure boost part
(using (176)) and then, if those are equal, comparing the rotation part (using
(162)).

Tl.compare(Tg) =1if Bl > B2 or [Bl = Bg and Rl > RQ} (182)
T .compare(Ty) = —1 if B, < By or [Bl = By and Ry < Rg}

Tl.compare(Tz) =0 if Bl = BQ and Rl = RQ
Ty > Ty if Ty.compare(Ty) = 1 (183)
T, < Ty if T}.compare(Ty) = —1

Although == and != comparisons could use this same comparison algo-
rithm, decomposition is expensive and unnecessary. Instead,

T = Szz/\ Tfﬁy = Sfﬂy/\ T = Sa:z/\ Ty = Szt/\
== Tyx = Syaf/\ Tyy - Syy/\ Tyz = Syz/\ Tyt = Syt/\
j-vtﬁ = Staj/\ Ey - Sty/\ th = Stz/\ Ttt = Stt

6.6 The Lorentz Group

Inversion of a HepLorentzRotation is supported. Since the matrix is or-
thosymplectic, the inverse matches the transpose, but with the signs of all
components with mixed space and time indices reversed.

52 6 HepLorentzRotation CLASS

Multiplication is available in three syntaxes:

T=TI*T2—= T =TT, (185)
T*=T1 = T =TT, (186)
T.transform(T1) = T =TT (187)

To complete the group concept, the identity HepLorentzRotation can eas-
ily be obtained; the default constructor for HepLorentzRotation gives the
identity.

Specialized transformations based on pure rotations and pure boosts are
available.

T .rotate(d,) = T = Rotation(d,)T (188)
T .rotateX(d) = T = RotationX(0)T
T.rotateY ()

)
—> T = RotationY(0)T
T .rotateZ(6) = T = RotationZ(0)T

-, -

T.boost(5) = T = HepBoost(5)T (189)
T .boost (S, By, B.) = T = HepBoost(B,, By, B.)T
T .boostX(f) = T = HepBoostX(8)T
T.boostY () = T = HepBoostY (5)T
T.boostZ(B) = T = HepBoostZ(5)T

6.7 Rectifying HepLorentzRotations

The operations on HepLorentzRotations are such that mathematically, the
ortosymplectic property of the representation is always preserved. And meth-
ods take advantage of this property. However, a long series of operations could,
due to round-off, produce a HepLorentzRotation object with a representa-
tion that slightly deviates from the mathematical ideal. This deviation can
be repaired by extracting the boost vector based on row 4, multiplying by
the inverse of that boost to form what should ideally be a rotation, rectifying
that rotation, and setting the HepLorentzRotation ,based on that boost and
rotation.

T.rectify() —

6.7 Rectifying HepLorentzRotations

3 = T.row4()

R = T Boost(—f)

drop time components of R
R.rectify()

T = R Boost(5)

53

(190)

o4 7 WHEN EXCEPTIONS OCCUR

7 When Exceptions Occur

Although this section is not about mathematical definitions, it may be useful
to understand what will happen if the user code sends a method data which
does not make physical or mathematical sense. For example, a user may supply
a vector of magnitude greater than one, to a method which will use that data
to form a Boost. The resulting tachyonic boost is unlikely to be the result the
user had intended.

7.1 How Problems Are Dealt With

In general, the package is configurable in one of three ways:

1. If ENABLE Z0OM_EXCEPTIONS is defined, then the Zoom Exceptions pack-
age is used. This allows the user code to control the behaviour to a
considerable extent, including ignoring versus handling specific types of
exceptional conditions and checking a stack of prior potential throws.
Ultimately, an unhandled exception which is deemed or serious severity
will throw a C++ exception, which if un-caught will cause the program
to terminate.

2. If ENABLE_ZOOM_EXCEPTIONS is defined, but C++ exceptions are not en-
abled (some compilers have a switch to do this; some experiments choose
to use this switch in an effort to improve performance) then the behavior
for an unhandled serios exception is to explicitly abort.

3. If ENABLE_ZOOM_EXCEPTIONS is defined, then this compilation is designed
for CLHEP, which currently does not use the Zoom Exception pack-
age. In that case, each problem will cause a message to be emitted
on cerr. In addition, the various problems which were deemed too se-
vere to ignore will throw actual C++ exceptions. These are all derived
from a class CLHEP vector_exception which is in turn derived from
the std: :exception class - see section 14.10 in Stroustrup. User code
catching a general CLHEP vector_exception can call the virtual method
what() to get a complete text message, or name() to just get the excep-
tion name.

7.2 Possible Exceptions

The following sorts of problems may be detected (and reported to cerr by
the Vector package, and may in some circumstances be non-ignorable. If the
problem can’t be ignored, then the corresponding exception (derived from
CLHEP_vector_exception is thrown.

7.2 Possible Exceptions 5%)

ZMxPhysicsVectors Parent exception of all ZMexceptions particular to classes
in the package.

ZMxpvInfiniteVector Mathematical operation will lead to infinity or NAN
in a component of a result vector.

ZMxpvZeroVector A zero vector was used to specify a direction based on
vector.unit().

ZMxpvTachyonic A relativistic kinematic function was taken, involving a
vector representing a speed at or beyond that of light (=1).

ZMxpvSpacelike A spacelike 4-vector was used in a context where its rest-
Mass or gamma needs to be computed: The result is formally imaginary
(a zero result is supplied).

ZMxpvInfinity Mathematical operation will lead to infinity as a Scalar re-
sult.

ZMxpvNegativeMass Kinematic operation, e.g. invariant mass, rendered
meaningless by an input with negative time component.

ZMxpvVectorInputFails Input to a SpaceVector or Lorentz Vector failed
due to bad format or EOF.

ZMxpvParallelCols Purportedly orthogonal col’s supplied to form a Rota-
tion are exactly parallel instead.

ZMxpvImproperRotation Orthogonal col’s supplied form a refection (de-
terminant -1) more nearly than rather than a rotation.

ZMxpvImproperTransformation Orthogonalized rows supplied form a tachy-
onic boost, a reflection, or a combination of those flaws, more nearly than
a proper Lorentz transformation.

ZMxpvFixedAxis Attempt to change a RotationX, RotationY, or Rota-
tionZ in such a way that the axis might no longer be X, Y, or Z respec-
tively.

ZMxpvIndexRange When using the syntax of v(i) to get a vector compo-
nent, i is out of range.

The following sorts of problems may be detected (and reported to cerr by
the Vector package, as warnings. In these cases, the methdos have sensible
behaviors avaialble, and will continue processing after reporting the warning.

56 7 WHEN EXCEPTIONS OCCUR

ZMxpvNotOrthogonal Purportedly orthogonal col’s supplied to form a Ro-
tation or LT are not orthogonal within the tolerance.

ZMxpvNotSymplectic A row supplied to form a Lorentz transformation
has a value of restmass incorrect by more than the tolerance: It should
be -1 for rows 1-3, 41 for row 4.

ZMxpvAmbiguousAngle Method involves taking an angle against a refer-
ence vector of zero length, or phi in polar coordinates of a vector along
the Z axis.

ZMxpvNegativeR R of a supplied vector is negative. The mathematical
operation done is still formally valid.

ZMxpvUnusualTheta Theta supplied to construct or set a vector is outside
the range [0,PI]. The mathematical operation done is still formally valid.
But note that when sin(theta) j 0, phi becomes an angle against the -X
axis.

57

8 Names and Keywords

8.1 Symbols in the CLHEP Vector Package

Here we list the keywords that the user may need to be aware are used by the
CLHEP Vectors package. Some symbols not listed here are:

e All symbols particular to the ZOOM PhysicsVectors package are listed
in the next section. Pure CLHEP users who do not include files fro a
Z0OOM area need not be concerned with these.

e Method names in class scope, and names accessible only in the scope of
a class (such as Rotation::IDENTITY) cannot clash with user names.

Names of functions defined at global scope do not actually pollute the user
namespace, as long as one or more of their arguments involves a class defined
in this package. These are therefore listed separately here.

File Defines Class Names

HEP_THREEVEVCTOR_H Hep3Vector

HEP_LORENTZVECTOR_H HepLorentzVector

HEP_ROTATION_H HepRotation HepRotationX
HepRotationY HepRotationZ

HEP_LORENTZ_ROTATION_H HepLorentzRotation HepBoost

HepBoostX HepBoostY HepBoostZ

HEP_ROTATION_INTERFACES_H Hep4RotationInterface Hep3RotationInterface
HepRep3x3 HepRep4x4 HepRep4x4Symmetric

HEP_EULERANGLES_H HepEulerAngles
HEP_AXISANGLE_H HepAxisAngle
Keywords and Types Constants Global Functions
Tcomponent X_HAT4 rotationQOf
TimePositive Y_HAT4 rotationX0f
TimeNegative Z_HAT4 rotationYOf

T_HAT4 rotationZ0f

X_HAT2 boostOf

Y_HAT2 boostX0f
HepXHat boostYOf
HepYHat boostZ0f
HepZHat inverseOf

o8 8 NAMES AND KEYWORDS

8.2 Further Symbols Defined in ZOOM Headers

For backward compatibility, ZOOM headers are made available. These typedef
classes to the corresponding CLHEP versions, and in the two cases of features
which were in ZOOM but are not in CLHEP—UnitVector and construction
of vectors from spherical coordinates—provide the appropriate features.

These ZOOM features are implemented purely at the header level; there is
no separate ZOOM PhysicsVectors library beyond the CLHEP library.

Note that for users including these headers, all symbols starting with ZMpv
are to be considered as reserved. These therefore do not appear in this list of
keywords.

File Defines Class Names

PHYSICSVECTORS_H

SPACEVECTOR_H SpaceVector

UNITVECTOR_H UnitVector

LORENTZVECTOR_H LorentzVector

ROTATION_H Rotation RotationX RotationY RotationZ

LORENTZ_TRANSFORMATION_H LorentzTransformation LorentzBoost
LorentzBoostX LorentzBoostY LorentzBoostZ

EULERANGLES_H EulerAngles

AXISANGLE_H AxisAngle

Keywords and Types Constants

DEGREES X_HAT

RADIANS Y_HAT

ETA Z_HAT

