A Library of Function Objects

J. Boudreau, Mark Fischler, Petar Maksimovic

January 7, 2024

0.1 Why Function Objects?

In many applications it is desireable to treat mathematical functions as objects; the action of function-
objects on their arguments and on each other (in other words, their algebra) can be defined in C++ so
that it reflects the acutal mathematics, and instances of thes functions can be applied flexibly at run time
either to data representing arugments or to other functions. Well-known use cases include: plotting, data
modelling, simulation, function approximation, and integral transforms.

Using pointers-to-functions is a frequently used approach in either C or FORTRAN which gives some run-
time flexibility but not nearly the power of function-objects. Using the native C math library we can write
sin(x)+exp(x), but we cannot write sin+exp nor pass this sum to other procedures. However, since we are
free to overload operators in C++, we can get around this shortcoming by endowing the abstract interface
to all function classes with all the operations we want our functions to have. For clarity we have attempted
to restrict this interface to mathematically well defined operations, which will be discussed below. Another
way to view this design is as one in which the abstract interface to functions permits the function library to
be extended not only through subclassing, but also through “composition”!. We believe that the composition
of functions through arithmetic operations is simple and intuitive since it is based on algebraic rules we’ve
learned during childhood and is expressed in the same natural language.

In addition, we want to control the shape of a function: when we fit a function to data, for example. We can
do so by possibly associating one or more parameters to a function, such as amplitude or frequency, lifetime,
or width. This can be accomplished in C++ with parameter objects that can be part of or composed together
with the functions. Altering a parameter alters the function or functions of which it is a component.

We have written a small class library (“GenericFunctions”) which implements the features described above,
for inclusion in the CLHEP project. Although our class library does not contain a comprehensive set
of functions for mathematics and physics, it does provide an extensible framework for developing such a
library. At the present writing it contains:

e An abstract base class for functions.

e (lasses representing parameters.

Arithmetic operations acting on both functions and parameters

Class representing a possibly multidimensional argument to a function

A small set of implemented functions

0.2 A Word to the Wise

Somebody told you once that C++ software is self-documenting. Being generally a trusting individual, you
believed this for a while. But now, you’re not so naive.

You're going to need documentation in order to make sense of the Generic Functions library. This is the
documentation you’ll need. There are a large number of classes here that you as a user don’t need to know
about at all. The header files aren’t encrypted so you can browse them if you like, but you won’t learn much
that way. Read this documention instead. Thank you.

lhere we mean composition in the sense of obect composition not function composition

0.3 Example Application

Our example application is a program to demonstrate the phenomena of interference and diffraction. This
standalone program should allow one to control the width and separation of two slits in a filter, and also the
intensity of light from each of the slits. As we change the parameters describing these variables we wish to
see the impulse function, or the intensity of light radiation at the position of the filter, change in real time.
Also we wish to simultaneously see the response function or the intensity pattern on the far screen, change in
a way that is controlled by the same parameters. For this example, we are not going to worry about how to
display the function. Graphics are outside the scope of the Generic Functions library. However just imagine
that there is a plotter somewhere that gets a function object £ and invokes the function-call operator during
plotting, like this:

double y = f(x); // f is a function object

The construction of functions is more involved than their invocation, so we’re going to look at the code
that sets up the functions and ties their shapes to the four parameters listed above. This code is shown in
Example 1, while screen shots from an application are shown in Figs. 2, 3, and 4.

Fig. 2 shows both slits wide open and the classic double-slit interference pattern on the screen. Fig. 3 shows
the the pattern when one of the slits is partially closed and the interference fringes are less sharp, and Fig 4
shows the one of the slits fully closed. In this last case you can see that the interference pattern has turned
into a single-slit diffraction pattern.

We have two functions that need to be displayed: the impulse function and the response function. Neither
of these functions are part of the library per se, but we can build them both out of the primitive functions
Rectangular (for the impulse function) and Sin and Cos (for the response function). which are in the
library. The response function, by the way, is given by the following expression:

I =[Agsinaz/2/(az/2)]” + [Ay sinaz/2/(ax/2)]* + 240 A, [sinaz/2/(az/2)] cos dx

where x = sin 6 and a is equal to the slit widht in units of the wavelength, d is equal to the separation between
the slits in units of the wavelength, and Ay and A; are the amplitudes from the two slits. The functions
we require are simple enough to be built easily but complicated enough to illustrate several fundamental
features of the library.

The basic parameters of the model are the intensities of the two slits, the width of the slits (this program
does not allow the two slit widths to be varied independently) and the separation. These parameters are set
up in lines 1-4 of the example. The variables corresponding to these parameters are called al, a2, s, and d.

However some parameters of the impulse and response functions do not conveniently map onto these pa-
rameters but to simple combinations thereof. So, we can make derived parameters out of the basic input
parameters. A derived parameter is a GENPARAMETER. This is shown in lines 5-8 where derived parameters
x0_0, x0_1, x1_0, x1_1 are defined in terms of input parameters.

The impulse function will be built out of two rectangular functions. So, we instantiate these functions (Line
9), connect their internal parameters to the input parameters (Line 10-11) and to the derived parameters
(Lines 12-15). The input parameters are now referenced both by the derived parameters and by functions
and must not go out of scope until the functions and derived parameters are no longer needed.

Now, whenever we vary the external parameter we're going to change the shape of the function. The two
rectangular functions can be added to obtain the response function (Line 16). The sum of the two functions
maintains its connections to the controlling parameters. The four parameters with variable names al, a2, s,
and d now not only control the two rectangular functions, but also their sum.

In the next few lines we build the response function, which is somewhat more involved. First we make
instances of the functions we’re going to use (Lines 17-20). Among these functions is a function x of class

Figure 1: Example. Use of Generic Functions libary. See text for explanation.

Figure 2: Picture of the example application which is discussed in the text. Above, the impulse function
shows both slots wide open. Each of the sliders changés parameters and causes the plotter to update. Below,
the response function shows the classic two-slit interference pattern.

Figure 3: The parameter values are now changed. All of the functions, both primitive and derived, change
their shape in response. Not that changing one parameter has affected both functions.

Figure 4: The second slit has been effectively closed, b6y setting the intensity of light through this slit to zero.
The two-slit interference pattern then reduces to single-slit diffraction. This simple classroom demonstration
program can now be used as an aid in discussing optics or quantum mechanics, and can be built in a few
lines with a few minutes of programmer’s time.

Variable, which just returns the value of its argument. We multiply this function by the constant 0.5 and
by the Parameter s to obtain a new function, alpha in Line 21, and then perform a similar set of operations
to obtain a function beta in Line 22. A derived function is a GENFUNCTION. Our algebra is defined on
all of these data types. We also use functions of type Square, Sin, and Cos.

The composition of functions is indicated by parenthensis (). The function square acts by squaring its
argument. The function amplitudeO is a simple function of the angular distance x. So, the function which
we naturally express as square (amplitudeO) in Line 23, is the composition of the function square with the
function amplitudeO. In this example, function composition is used again in lines 24-28.

In general, we have tried to design this library so that single dimensional functions, multidimensional func-
tions, double-precision constants and parameters all behave exactly as expected. If you find that they don’t,
then report it to us. It’s a flaw that we want to fix. We have found no technical reason that functions,
parameters, and constants cannot be made to mirror quite closely a mathematical language.

After the impulse function and the response function have been defined they can be passed around to other
routines that may be written to the abstract interface of all functions, AbsFunction. This abstract interface
allows one, essentially, to evaluate the function using operator () (double x) and to further compose it with
functions, scalars, and parameters. In this example the functions impulse and response are passed on to
some plotters. The shape of the function is controlled by the parameters; changing the vlaue of a parameter
changes all the shapes of all functions that depend on it, both primitive and derived. In this example we
have arranged things so that the parameters are modified when the scale is moved, giving users a way to
control the shapes of both functions while seeing the visual representation of the function respond in real
time to the scale setting.

0.4 Automatic derivatives

Any function, whether simple or composite, one dimensional or multidimensional, can return partial deriva-
tives with respect to any argument. The computation is done symbolically, in general, not numerically. In
case an analytic derivative is not available for any function, a numerical calculation is provided instead. For
one-dimensional functions, the derivative is returned using this method:

GENFUNCTION fprime = f.prime(); // F is a GENFUNCTION

Partial derivatives of multidimensional functions with respect to one of their arguments is taken up in
section 0.6 below. Information on whether the derivative of a particular function is analytic or not can be
obtained through the use of the method bool AbsFunction::hasAnalyticDerivative() const.

0.5 The AbsFunction Class

The abstract base class for all functions of one or more dimensions is AbsFunction. The header file for this
class also defines operations on the class. The base class describes the essential behaviour of all functions:

e virtual double operator() (double) const = 0

e virtual double operator() (const Argument &) const = 0;
e virtual unsigned int dimensionality() const;

e virtual Derivative prime() const;

e virtual bool hasAnalyticDerivative() const;

It also defines a default constructor and a virtual destructor, and hides the copy constructor and the default
assignment operator. The data type Derivative is an AbsFunction, and may be handled like any other
AbsFunction.

0.6 Multidimensional Functions and Arguments

Functions of more than one variable can be defined within this scheme. The way this is handled is using
the class Argument, which essentially is a vector-like list of double-precision numbers. The argument is
constructed using the integer number-of-dimensions; then each element of the argument can be set using
operator[] (int i); for example:

Argument a(2);

al0]=1.0;

al[1]=2.0;

cout << myFunction(a) << endl;

Users should take care to pass to functions an argument of the right dimensionality. Failure to do so will
result in a run-time error. In addition care should be excercised when operating on functions with binary
operations like addition or multiplication, that the functions both operands has the same dimensionality.
Otherwise, a run-time error results.

In case of functions of a one-dimensional argument, one may either call
operator() (double) const

or

operator() (const Argument &) const,

and passing one-dimensional arguments only.

For multidimensional functions, one can obtain the partial derivative with respect to any argument using
the method virtual Derivative AbsFunction::partial(unsigned int i) const. An alternate way
to express this depends upon our ability to associate names to components of a multidimensional argument,
and is described in the next section.

0.7 Variables

The class Variable is the most elementary function. The function value it returns is just the argument
itself. It is useful because it can be used in function composition, like this:

Sin sin;
Variable x;
GENFUNCTION f = sin(2.0%x);

The class Variable can also be used to associate names with particular components of a multidimensional
argument, using the alternate form of the constructor, like this:

Variable x(0), y(1);
Genfunction f = cos(y)sin(x) + sin(x)cos(y);

The function f is now a function of two variables. Alternately, the function may be constructed from the
direct product operator %, see section 0.10 below.

If v is a variable and f is a multidimensional function, we can express the partial derivative of £ with
respect to the variable v like this:

GENFUNCTION fPartialV = f.partial(v);

i.e. using the method virtual Derivative AbsFunction::partial(const Variable & v) const.

0.8 AbsParameters

AbsParameter is an abstract base class for simple parameter classes representing double precision numbers.
There are two main types of AbsParameters. The first kind, simply called Parameter, comes with certain
other services such as upper limits, lower limits, and connections to other parameters. The other kind is
composite parameters, resulting from arithmetic operations on parameters. For now we will discuss only the
first kind, Parameter. Neither class is really intended to be extended any further by users.

0.9 Parameters

The first service that parameters perform is to provide limits: it is impossible to set a parameter value outside
of its limits—if this is attempted the parameter value will be set to the maximum or minimum allowed value.

Parameters can be made to take their value from other parameters. The programmer sets this relationship
through the connectFrom() method, as illustrated here:

Rectangular rect;
Parameter height("Height", 1.0, 0.5, 2.0);
rect.height () .connectFrom(height) ;

The first line creates a Rectangular function. The second line instantiates a parameter object called height
with name ”Height”, lower and upper limits of 0.5 and 2 and a value of 1.0; The third line first accesses the
internal parameter height () used by the function and connects this function permanently to the parameter
height.

Functions allow access to their parameters. The shape of the function is then determined in one of three
ways:

e The default value of the parameter can be taken.

e The value of the parameter can be set to a new value.

e The value of the parameter can be obtained from another parameter (if the parameter is connected).
When functions are used as arguments to arithmetic operations, and their parameters are connected, the
connections are maintained in the composite function so created. However if a parameter in a function is
connected after the function has been used in creating a composite, the composite function does not respond

to changes in the value of the connected parameter. Instead it has the value of the parameter at the time it
was created ”frozen in.

0.9.1 Parameter class interface

Here is the public interface to the parameter class; the destructor, copy constructor , and assignment operator
are not included on this list but are defined; the default constructor is not defined.

Constructors:

Parameter(std: :string,
double,
double x0=-1e100,
double x1= 1e100);

Accessors:

const std::string & getName() const;
double getValue() const;

double getLowerLimit() const;

double getUpperLimit() const;

Modifiers:

void setValue(double);

void setLowerLimit(double lowerLimit);
void setUpperLimit(double upperLimit);
void connectFrom(Parameter *);

Print method:

std::ostream & operator << (std::ostream &,
const Parameter &);

0.10 Arithmetic Operations

The result of binary or unary arithmetic operation involving an AbsFunction is another AbsFunction:
however it is special kind of AbsFunction; generally the user will not care which kind since the actual return
type depends on the last operation to be evaluated in the expression. The user needs to learn one trick,
which is to handle the result of the arithmetic operation through the base class. This is demonstrated here
where, we multiply an exponential with a cosine:

1 Exponential exp; // makes an exponential

2 Cos cosine; // make a cosine

3 AbsFunction & f = exp*cosine; // multiply the functions.
4 cout << f(5) << endl; // evaluate & print.

The third line of this example is standard and safe. It generates a function of class FunctionProduct, which
also has type AbsFunction. All operations on functions return a value that has type AbsFunction, although
the class depends on the actual operation, e.g. multiplication, division, et cetera. However the user does not
care about which class is returned, but only cares that the return value has type AbsFunction, because he
or she should handles it through the base class, AbsFunction.

10

Symbol | Name Operand 1 Operand 2 return type
+,-%/ Simple AbsFunction | AbsFunction | AbsFunction
Arithmetic AbsFunction Constant AbsFunction
Operations Constant AbsFunction AbsFunction
AbsFunction AbsParameter | AbsFunction
AbsParameter | AbsFunction AbsFunction
AbsParameter | AbsParameter | AbsParameter
Constant AbsParameter | AbsParameter
AbsParameter | Constant AbsParameter
unary - | Negation AbsFunction AbsFunction
AbsParameter AbsParameter
0 Composition AbsFunction | AbsFunction | AbsFunction
AbsFunction AbsParameter | AbsParameter
% Direct Product | AbsFunction AbsFunction AbsFunction
convolve | Convolution AbsFunction AbsFunction AbsFunction

Another way of accomplishing the same thing is provided by the data type GENFUNCTION, typedef’d back to
const AbsFunction &. It allows one to reexpress line 3 above in the following way:

GENFUNCTION f = exp*cos;

You can use this syntax if you find it more natural. For technically-minded people, the syntax generates a
temporary object and a reference thereto. In ANSI standard C++ the temporary is guaranteed to persist
until the refererence £ goes out of scope.

Most of the operations that are valid on functions are also valid on parameters. Two parameters may be
added, subtracted, multiplied, and divided-to yield another parameter. As in the case of functions, the return
type of an operation yielding a parameter is an AbsParameter &, which is typedef’d as GENPARAMETER, for
example:

GENPARAMETER x_s = Delta_m/Gamma;

where Delta_m and Gamma are both AbsParameters. Finally, operations between AbsFunctions, AbsParameters,
and simple double precision numbers (we’ll call them constants) are also defined. Unary negation is also
defined on all of these data types.

Three additional operations are defined for functions. The direct product is for constructing multidimen-
sional functions from lower-dimensional functions. For example a multivariate gaussian distribution of two
uncorrelated variables could be built from two one dimensional gaussians using the following syntax:

Gaussian f;
Gaussian g;
GENFUNCTION h = fig;

Mathematically, this is equivalent to f(z) x g(y) = h(x,y). Some multidimensional functions may be con-
structed from lower dimensional functions but of course not all functions can be constructed this way. Where
it fails, one can still resort to inheritance and build the needed function by subclassing AbsFunction. The
picture in Fig. 5 illustrates a multidimensional function obtained by forming a three dimensional function
from lower dimensional functions, the illustration is the probability density function for a higher excited
state of hydrogen.

The composition operator is for taking functions of functions, or functions of parameters. It is denoted with
the function call operator, (). For example the following syntax is valid:

11

Figure 5: Multidimensional functions can be expressed as a direct product of lower dimensional functions;
this example combines a Legendre Polynomial with the product of an exponential, a power function and a
Laguerre Polynomial to obtain the probability density function of an electron in an excited state of hydrogen.
The dots are generated by performing a random throwaway against a generic function of three dimensions.

12

Exponential exponential;
Sin sine;
GENFUNCTION f = sine(exponential) ;

A convolution of two functions has no special symbol-we ran out of them- but is produced with the convolve
method. This function performs a numerical convolution of the two functions treating the first function as
a response function, the second as a resolution function. The function has two addtional arguments, which
are the limits of the numerical convolution. The convolve function is then used like this:

Exponential exp;
Gaussian gauss;
GENFUNCTION h = convolve(exp, gauss, -10.0, 10.0);

The technique employed is to sample the product f(x —y)g(y) at 200 points between 20 < y < x1, where f
is the response function and g is the resolution function. We hope to use Fourier techniques to improve this
method in due time.

0.11 Some Functions in the library

Several types of functions have been implemented in this scheme. A table of those functions is shown here.
Certain functions, such as Legendre Polynomials, take arguments to their constructor that specify the order
of the polynomial. In other cases internal parameters govern the shape of the function. The distinction is
arbitrary at times, since, for example, Bessel functions need not be of integral order. In general we have
preferred to leave parameters out of functions if one can obtain the same result by other means, for example,
objects of class Sin do not have a frequency parameter since one can obtain this as follows:

Parameter freq (‘‘freq’’, 10.0);
Sin sine;

Variable x;

GENFUNCTION f = sine(freg*x) ;

0.12 Parameter to Argument Adaptors

Parameters control the shape of a function, which then act in the space of their arguments. In many
applications it is useful to be able to create a new function out of an existing function by treating one of its
parameters as an argument.

A use case would be the following. Suppose that one has written a function to describe a measured
quantity, like lifetime, smeared with a resolution function which is a Gaussian. The resulting function is
parametrized by o, the width of the Gaussian distribution. However to use this function in an unbinned log
likelihood fit, we often need to incorporate event-by-event estimates of 0. To do this is to formally promote
the parameter o to an argument, in other words to turn:

F(a;,o0;2) (1)

into
F(ai;0,1) (2)

We do this using a helper class called ParamToArgAdaptor. The class is an AbsFunction that takes as
arguments to its constructor:

13

Function Name Parameters

Variable Returns its own input

FixedConstant Returns a constant

Sqrt Sqrt

Square Returns square of input

Power Returns a power of input

Exp Exponential

Sin Sine

Cos Cosine

Tan Tangent

Ln Natural Logarithm

Erf Error function

ForwardExp Forward Exponentail tail decayConstant

ReverseExp Reverse Exponential tail decayConstant

LogGamma Natural log of Gamma function

IncompleteGamma Incomplete Gamma Function a

CumulativeChiSquare | Probability(x?)

Gauss Gaussian (Normal) distribution | mean
sigma

Landau Landau distribution peak
width

Rectangular Rectangular function x0
x1
baseline
height

PeriodicRectangular Periodic rectangular spacing
width
height

SphericalBessel Spherical Bessel Functions

SphericalNeumann Spherical Neumann Function

AssociatedLaguerre Associated Laguerre Polynomial

AssociatedLegendre Associated Legendre Polynomial

AnalyticConvolution Moser-Roussarie convolutions frequency
lifetime
resolution

IntegralOrder::Bessel Bessel and Neumann functions

FractionalOrder::Bessel | Bessel and Neumann functions order

BivariateGaussian Gaussian in 2 variables mean(, meanl,
sigma0,sigmal, corrQ1
TrivariateGaussian Gaussian in 3 variables mean|0-2],sigma[0-2]

corr[0-2][0-2]

14

e The name of an auxilary function, whose parameter it is to promote.

e The name of a member function of the auxilary function, which accesses the parameter to promote.

For example, one can turn a smeared expontial function of one variable into a function of two variables,
where the second variable is the event-per-event error estimate.

Genfun::AnalyticConvolution smearedExponential (Genfun::AnalyticConvolution::SMEARED_EXP);
ParamToArgAdaptor<AnalyticConvolution> smExpEventByEvent (smearedExponential,
&AnalyticConvolution: :sigma) ;

The function smearedExponential is a function of one argument, so the new function smExpEventByEvent
is a function of 2 arguments. The last argument is the event-by-event resolution. Scale factors may be added
to the newly created function, so that the actual value of the parameter used is some scale factor times the
argument provided. The scale factor is in fact a parameter of the adaptor class, accessed via the method
scaleFactor, and may be set or connected just like any other parameter.

In case two parameters need to be promoted along these lines, we provide an additional class:
DoubleParamToArgAdaptor

which differs from ParamToArgAdaptor only by the presence of an additional argument to the constructor
(the name of a member function accessing the second parameter to be promoted) and the presence of a
second parameter (an additional scale factor).

0.13 How to extend the Generic Functions package with your own
function

Creating a function for the Generic Function package or inserting an existing function into the framework
has low work overhead. Of course if the function is complicated and hard to write, this the framework does
not make it easier! However there are only a small number of steps involved in creating a one- or multi-
dimensional function and endowing it with parameters that control its shape. We present this procedure as
a checklist:

1. Derive your function publically as a subclass of AbsFunction.

2. What is the dimensionality of your function? If the answer is "one”, then you don’t need to override
the method

virtual unsigned int dimensionality() const;

because the base class provides a default implementation which returns the value 1. Otherwise, if your
function has two or more dimensions, you will need to override the method.

3. Which parameters (if any) does your function depend on? For each parameter you need to add a
Parameter data member for that parameter, and initialize it with its default value and range in the
constructor. Also you will want a way of getting a reference to the parameter-and actually you will
want two methods, overloaded on const. The purpose of having both methods is so that you will get
back a parameter that you can modify if the function itself is modifiable, and a read-only parameter if
the function is readonly. If overloading on const is strange to you, you can read up on it in Meyers; or
you can just adapt both of these example lines:

15

Parameter & parm();
const Parameter & parm() const;

which shows, for example how to retrieve a parameter called ”parm” from a function. This is important
and the compiler errors may appear very mysterious if you don’t write your parameter accessors this
way.

. You must provide an implementation of these two functions which are pure abstract in the base class:

virtual double operator() (double) const;
virtual double operator() (const Argument &) const;

These operators are what your function ”does” so how you go about doing this is your business. But
typically, for one dimensional functions the second form of the function just calls the first; while for
multidimensional functions the first form generates a run-time error and the second form checks the
dimension of the argument before evaluating it.

. The composition operator, operator() (const AbsFunction &) is overloaded in the base class and
you don’t want to hide it in the subclass, so put the line using AbsFunction::operator() in the
header file of your derived class.

. Copy constructors are required for the proper operation of your function within the framework. You can
use the compiler-generated copy of this constructor if you wish; the usual caveats about dynamically
allocated memory apply here as with any class. The assignment operator is confusing because it only
allows one to assign Gaussians to Gaussians, exponentials to exponentials, et cetera, so this function
should be turned off. The way to do this is to a) declare the assignment operator, b) make it private,
and ¢) do not provide an implementation.

. You will need to declare and define the method:
virtual SubClass * clone() const;

where SubClass is your new class. This construction uses the covariant return type mechanism, since
the function in the base class returns an AbsFunction *. The purpose of the routine is of course
to return a pointer to a newly allocated object. The easiest way of implementing this function is to
use the copy constructor that you wrote (if you wrote one, otherwise you can take the default copy
constructor that the compiler wrote for you).

. Optional If you will be providing an analytic derivative for your new function, then override the
method
Derivative partial (unsigned int) const;

The function Sin provides a good example of how to do this. Should you choose to provide an analytic
derivative, you should also then override the method

bool hasAnalyticDerivative() const

so that it returns true. Our preference is to put the implementation right in the header file since it
provides useful information (“yes, this class has an analtyic derivative”) for users.

16

0.14 Cut classes

GenericFunctions is based on our ability, in C++, to write classes having the algebra of real functions of
one or more variables. The same techniques which have been applied here can be used to describe other
algebras. In particular, there is an extremely useful extension to cut classes, which are objects that return a
true or false decision on some data type, and which support the algebra of boolean operations. A set of base
classes has been written to allow one to create cuts on any data type, to combine them using the operators
|1, && and! We have written these classes to interoperate with with the standard template library.

A simple example will show the usefulness of this. In this example, the cut-object IsPrime and IsInRange
have been written as subclasses of Cut<int>. In the example we use these cuts to select prime numbers in
the range 30-60, and print out the result (31,37, 41, 43, 47, 53, 59) to the terminal screen:

int main(int, char *x*) {
//
// Make an array of integers:
//
const int LENGTH=100;
int integers[LENGTH];

//

// Fill them with the integers:

//

for (int i=0;i<LENGTH;i++) integers[i]=i;
//

// Make an output iterator:

//

std::ostream_iterator<int> dest(std::cout,"\n");
//

// Cut on prime numbers between 30 and 60:
//

const Cut<int>::Predicate cut = IsPrime() && IsInRange(30, 60);
std: :remove_copy_if (integers, integers+LENGTH, dest, !cut);

//

// Bye:

//

return O;
Let’s look in detail at how one of these cut objects was declared (note that it inherits from Cut<int>):
class IsPrime:public Cut<int> {

public:

// Constructor:
IsPrime();

// Destructor:
virtual ~IsPrime();

// Truth operator:
bool operator () (const int & arg) const;

17

// Clone
virtual IsPrime *clone() const;

};

Readers familiar with the standard template library will ask, “How does this relate to STL predicate
types? What has been gained, and what has been the cost?” One has gained the ability to combine existing
cut-objects with boolean operations. The cost has been: some virtual function calls in the evaluation of
these objects, and the necessity of inheriting from Cut<Type>, meaning also that two pure virtual functions:

e virtual Cut * clone() const = 0;

e virtual bool operator () (const Type & t) const = 0;

will have to be defined by the user.

Unlike the function-objects, we do not provide any concrete cut-objects. Instead what we provide is the
base classes that allow one to easily write STL predicates supporting boolean operations? To access these,
include the header file CLHEP/GenericFunctions/TrackCutBase.hh.

2To be sure, the STL has a set of classes that allow one to combine cuts using boolean operations, but their interface is
appalling.

18

