Euler Angle Computation in the CLHEP
Vector Package

Mark Fischler

Version 1.0, April 24, 2003

The naive (though algebraically sound) technique for extracting HepEulerAngles
from a HepRotation is flawed when the HepRotation represents a rotation
very nearly around the Z axis, in the presence of small round-off induced er-
rors in the values of the rotation matrix components. By flawed, we mean that
when the resulting Euler angles are used to reconstruct the HepRotation, that
reconstructed HepRotation may be quite different from the original.

This document will illustrate the mechanism by which this flaw comes up,
and will derive and justify a superior algorithm for calculationg the proper
euler angles.

Contents

1 The Naive Algorithm 1
2 The Potential Flaw 2
3 Deriving The New Algorithm 3
4 The New Algorithm 5
5 Accuracy of a Reconstricted R 6

1 The Naive Algorithm

The relation between the Eueler Angles and a HepRotation R is given by:

v.rotate(¢, 1) =

1

2 2 THE POTENTIAL FLAW

cos 1 cos ¢ — sin v cos 0 sin ¢ cossin @ + siny cosfcos¢ sin sin 6
—siny cos ¢ — cosycosfsing —sinysing + cospcos cos¢ cossinf
sin # sin ¢ —sin 6 cos ¢ cos
(1)
As of CLHEP 1.8, the algorithm for comupting Euler angles (¢, 0, ¢), gloss-
ing over special cases, was as follows:

1. Find 0 by taking cos™ R.. and sinf = /1 — R2_. By definition, 6 is in
quadrant I or II, and sinf > 0.

2. Knowing the form of R,, = —sinf cos ¢, extract cos |¢| = —R.,/sin#.
3. Similarly, cos [¢)| = +R,./sin#.

4. Taking the arc cosine of the expressions just computed gives |¢| and [)].
The signs of ¢ and ¢ are assigned so as to yield proper signs for R,, and
R, respectively; if one or both of those is zero then demand instead the
proper sign for R,, and/or R,..

5. The case where R,, = +1 is treated specially. In that case, there is a
freedom to tradeoff values of ¢/ and ¢, and an arbitrary rule is imposed:

2 The Potential Flaw

The above algorithm is analytically correct, but if one perturbs R;; — R;; +€;;
for some set of ¢;; << 1, then ¢ — 1409 and ¢ — ¢+ 0¢ where, if sinf << 1
then 01 and d¢ need not be small.

To illustrate: Say R represents a rotation by angle u about the Z axis, but
R.. is perturbed to be 1 — e while none of the other components in the Z row
or column—the components with value 0 for a Z rotation—are perturbed. Now
a rotation by angle p about the Z axis falls into the ambiguous case, where
any answer with § << 1 and ¥ + ¢ ~ u would be acceptable.

However, the algorithm described above will assign a tiny but non-zero
value to sin . So it will decide that the divisions in cos|¢| = —R,,/sinf and
cos |¢p| = +R,./ sinf are valid operations. Of course, since the numerators are
exactly zero, it does not matter that the denominators are small; these will
say that |¢)| = 7/2 and |¢| = 7/2.

Then the algorithm attempts to determine the signs of ¢ and ¢; and the
actual code gets into futher trouble since it knows that sin 6 is non-zero, thus
it is “impossible” (yet true) to have all four of R,., R,., R.,, R., = 0. But

Yz
no matter how clever the algorithm at that point, once it is decided that

|| = |¢| = 7/2 there is no way to recover the proper relationship ¢ + ¢ ~ p.
And in fact, if you form a HepRotation from the computed Euler angles, you
will either get something close to the identity matrix, or something close to a
180 degree rotation about the Z axis—neither of which resembles the original
matrix in the least!

In general, if the HepRotation represents any rotation about some axis
making an angle with the Z axis which is smaller than or comparable to the
uncertainty in the matrix elements, then the algorithm used in CLHEP 1.8
and earlier is flawed in this way.

3 Deriving The New Algorithm

It is true that for 1 — |R,.| small, the exact values of Euler angles depend
sensitively on the values of all the matrix components. Thus the problem of
extracting Euler angles for such cases is numerically unstable. But this is not
fatal; what we want is a set of Euler angles that comes very close to properly
representing the rotation matrix, and if other sets of Euler angles would also
come close, we don’t mind not finding them.

Fortunately, the problem of extracting Fuler angles in the presence of per-
turbations of the matrix elements, such that the reconstructed matrix will
match the original up to differences of the same order as those perturbations,
is tractable and numerically stable, as we now show.

We start with the observations that

Ry + Ryy = +cos(y) + ¢)(1 + cosb) (2)
Ry, — Ry, = +cos(vp — ¢)(1 — cos0) (3)

If R,. is non-negative, (1+ cosf) > 1, while if R,, is negative, (1 — cosf) > 1;
so one of the above equations can always be used to determine |¢) &+ ¢| with
no risk of division by a small quantity. And if |R,.| is not close to 1, both
equations are numerically stable so both combinations can be found.

Still working in the X-Y sector,

Ryy — Ryw = +sin(¢ + ¢)(1 + cos6) (4)
Ry + Ry, = —sin(y — ¢)(1 — cos) (5)

We also observe, in the Z sector, that

Rzszx - Ryszy =+ COS(¢ - ¢) (Sin2 9) (6)
Ry.R.. + Ry R., = —cos(¢ + ¢)(sin?) (7)

4 3 DERIVING THE NEW ALGORITHM

And

Rmszy + Rysza: = Sin(¢ - ¢) (Sin2 6) (8)
Ry R,y — Ry.R., = —sin(¢ + ¢)(sin® 0) (9)

Finally, we note that if we can determine cosine and sine of the sum and
the difference of ¥ and ¢ in a numerically stable manner, then that determines
1 and ¢ in a stable manner.

All the above relations are all stable except when 1 —|R,.| ~ 0. So except
when 1—|R,.| ~ 0 we can use either the Z sector, or the X-Y sector, or for that
matter the simple R,./sinf and R,/ sin 6 forms used by the naive algortihm.

When R,, ~ 1, the entire Z sector becomes numerically unstable, as do
the relations determining cos(v) — ¢) and sin(i) — ¢) in the X-Y sector. That
is not so terrible, since at K., = 1 only the value of 1 + ¢ is relevant; ¢ — ¢ is
moot.

Similarly, when R,, ~ —1, the Z sector is numerically unstable, and the
relations determining cos(v + ¢) and sin(i) + ¢) in the X-Y sector are useless,
but only the value of ¥ — ¢ is relevant; 1) + ¢ is moot.

So what is needed is some method which always gives the correct values for
meaningful quantities, and sensible values for the moot quantities. The way
to accomplish this is to combine the relations determining sin and cos of the
“moot” quantities, so as to find (for the R, ~ 1 case) 1)—¢ = tan™! %.
In this fraction, the factors of 1 — cos 8 cancel one another.

Computing ¥ — ¢ as an arctan would force it to lie between —7 /2 and 7/2.
How can we detect when the correct value is outside that range? We could
look at the sign of sin(y) — ¢), that is to say, the sign of —(R,, + R,;). This
would tell us whether to use the result of arctan directly or to add or subtract
7. On the other hand, it is much easier to use the function atan2(s/c), which
does this work for you.

One would expect from the above reasoning that when R is slightly per-
turbed in a pseudo-random manner, the formulae given would reproduce the
original Euler angles more closely than the “naive” formulae described earlier.
A bit of mathematical experimentation verifies that this is so-the new formu-
lae are about an order of magnitude less sensitive to fluctuations which violate
the orthogonality of R.

Two improvements are tempting, but turn out to be harmful. Both address
the issue of attempting to morph smoothly to the action taken when |R,,| = 1
precisely (in which case we by fiat choose ¥ = R,.¢). Sometimes in computing
the potentially moot combination of ¢ and ¢, the magnitude of the value
computed for cos(1) £ ¢)(1F cos) exceeds (1Fcosf). It may then be thought
that the arithmetic is telling you to consider that denominator as illogically

large, and just treat the arctan of that combination as zero (that is, force
1 = =£¢). This turns out to introduce a flaw in the result (in the sense
discussed above) most times that this “improvement” is applied. Similarly,
one can check that the sign of the X-Y sector expression for sin() 4 ¢) matches
the sign of the expression for the same sin(¢ £ ¢) computed from components
in the Z sector, and if they do not match, treat this as an indication that the
combination is moot and set ¢p = 4+¢. Again, most times this opportunity
presents itself, setting 1 = +¢ introduces a flaw into the answer.

However, one correction of significance must be applied: The algorithm
described will always impute values for 1) £+ ¢ which are in the range (—m, 7]
But clearly the actual values of ¥ and ¢ can can have a sum or difference
anywhere in (=27, 27]. Getting this wrong will manifest itself as an error by
7 in the computed values of 1) and ¢.

This can be dealt with by bringing in information in the Z-sector: If ¢ (or
¢) has the wrong sign relative to that which can be read off the last column
or row, then one should add or subtract © from both ¢ and ¢. Here, when
|R..| ~ 1, there is the potential for numerical instability; fortunately, in such
cases only the value of one combination ¥ 4 ¢ is relevant when re-expressing
the rotation matrix. So as long as the correction is applied to both ¢ and ¢
or neither, the result (in such a case) is not truly flawed.

There are, of course, four possible terms in the Z-sector to use to ask
whether we have the wrong value for 1) and ¢:

1. R,,: If siny) > 0 then ¥ > 0.

2. Ry.: If cosy > 0 then |¢] < /2.
3. R.,: If sin¢ > 0 then ¢ > 0.

4. Ry.: If —cos¢ < 0 then [¢| < 7/2.

The most stable algorithm will use that quantity among those four which
is largest in absolute value.

4 The New Algorithm

The algorithm uses only the X-Y sector and R,,. cosf = R., and this deter-
mines 6.

If R.. > 0 the primary stable quantity is ¥ + ¢:

1. Compute ¢ + ¢ = tan " With the numerator and denominator
in this form we can get the proper value of ¢ + ¢ (including the proper

quadrant) by using the atan2(s/c) function.

—1 Rzy *Ryz

6 5 ACCURACY OF A RECONSTRICTED R

1 —(Ray+Rys
2. Compute 1) — ¢ = tan 15,%1:%}?;).

If R.. < 0 the primary stable quantity is ¢ — ¢:

1. Compute ¥ — ¢ = tan™* %. We put the numerator and denomi-

nator in this form so that we can get the proper value of) — ¢ (including
the proper quadrant) by using the atan2(s/c) function.

—1 Rzy *Ryz
Ryx +Ryy .

2. Compute 9 + ¢ = tan

Then, in either case, compute ¢ = 3 [((¢¥ + @) + (¥ — @)l and ¢ = £ [((¥ + &) — (¥ — ¢)].
Finally, apply the potential & corrections, based on the largest of |R,.|, |Ry.|, | R.xl, | Rayl:

1. IfR,, > 0 and ¢ < 0 then correct ¥ and ¢.
2. IfR,, >0 and [¢| > 7/2 then correct ¢ and ¢.
3. IfR,, >0 and ¢ < 0 then correct ¢) and ¢.
4. IfR,, <0 and [¢| > /2 then correct ¢ and ¢.

In each case, to “correct” a quantity means to add = if negative, or to subtract
7 if positive.

5 Accuracy of a Reconstricted R

Ultimately,if one perturbs R;; — R;; + €;; for some set of ¢;; each of which is
of order ¢ << 1, then one has a non-orthogonal matrix. There is no reason
to believe that one can perfectly extract Euler angles from such a matrix, and
in fact, any manner of approximating the Euler angles will have the following
property: A matrix reconstructed from those Euler angles will be perfectly
orthogonal (to within achine roundoff errors) and therefore cannot precisely
match the original matrix.

The naive size of the resulting unavoidable “flaw” is of order €, but in
fact (except in special cases such as 6 ~ 7/2) in general the flaw goes as /€.
This can easily be seen from the fact that when R,.., = cos@ is perturbed
by €, unless R, is very small, sinf is perturbed by O(y/€). And sin€ does
appear multiplying terms in the Z row and column, so at least these terms are
vulnerable to errors of order O(/€).

